[1] |
Veselago VG. The Electrodynamics of Substances with Simultaneously Negative Values of ɛ and μ[J]. Sov Phys Usp. 1968;10(4):509.
|
[2] |
Pendry JB, et al. Magnetism from conductors and enhanced nonlinear phenomena. 2000;47(11):2075–84.
|
[3] |
Smith DR, et al. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett. 2000;84(18):4184–7.
|
[4] |
Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett. 2000;85(18):3966–9.
|
[5] |
Eleftheriades GV, Iyer AK, Kremer PC. Planar negative refractive index media using periodically LC loaded transmission lines. IEEE Trans Microw Theory Tech. 2002;50(12):2702–12.
|
[6] |
Hoffman AJ, et al. Negative refraction in semiconductor metamaterials. Nat Mater. 2007;6(12):946–50.
|
[7] |
Houck AA, et al. Experimental observations of a left-handed material that obeys Snell's law. Phys Rev Lett. 2003;90(13):137401.
|
[8] |
Shelby RA, et al. Experimental verification of a negative index of refraction. Science. 2001;292(5514):77–9.
|
[9] |
Mocella V, et al. Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial. Phys Rev Lett. 2009;102(13):133902.
|
[10] |
Huang X, et al. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat Mater. 2011;10(8):582.
|
[11] |
Feng S. Loss-induced omnidirectional bending to the normal in ϵ-near-zero metamaterials. Phys Rev Lett. 2012;108(19):193904.
|
[12] |
Schurig D, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science. 2006;314(5801):977–80.
|
[13] |
Kundtz N, Smith DR. Extreme-angle broadband metamaterial lens. Nat Mater. 2010;9(2):129.
|
[14] |
Ergin T, et al. Three-dimensional invisibility cloak at optical wavelengths. Science. 2010;328(5976):337–9.
|
[15] |
Hui FM, Cui TJ. Three-dimensional broadband ground-plane cloak made of metamaterials. Nat Commun. 2010;1(3):21.
|
[16] |
Ma Q, et al. Experiments on active cloaking and illusion for Laplace equation. Phys Rev Lett. 2013;111(17):173901.
|
[17] |
Yang F, et al. DC electric invisibility cloak. Phys Rev Lett. 2012;109(5):053902.
|
[18] |
Cheng Q, et al. An omnidirectional electromagnetic absorber made of metamaterials. New J Physics. 12(6):063006.
|
[19] |
Sheng C, et al. Trapping light by mimicking gravitational lensing. Nat Photonics. 2013;7(11):902.
|
[20] |
Ramakrishna SA, et al. Imaging the near field. J Mod Opt. 2003;50(9):1419–30.
|
[21] |
Jiang WX, et al. Broadband All-Dielectric Magnifying Lens for Far-Field High-Resolution Imaging. Adv Mater. 25(48):6963–8.
|
[22] |
Xiang W, et al. A broadband transformation-optics metasurface lens. Applied Physics Lett. 2014;104(15):151601–4.
|
[23] |
Ma Q, et al. Broadband metamaterial lens antennas with special properties by controlling both refractive-index distribution and feed directivity. J Opt. 2018;20(4):045101.
|
[24] |
Mei ZL, et al. A half Maxwell fish-eye lens antenna based on gradient-index metamaterials. IEEE Trans Antennas Propag. 2011;60(1):398–401.
|
[25] |
Qi MQ, et al. Tailoring radiation patterns in broadband with controllable aperture field using metamaterials. IEEE Trans Antennas Propag. 2013;61(11):5792–8.
|
[26] |
Chen X, et al. Three-dimensional broadband and high-directivity lens antenna made of metamaterials. J Appl Physics. 110(4):044904.
|
[27] |
Lin XQ, et al. Controlling electromagnetic waves using tunable gradient dielectric metamaterial lens. Appl Phys Lett. 92(13):131904.
|
[28] |
Holloway CL, Dienstfrey A, Kuester EF, O’Hara JF, Azad AK, Taylor AJ. Metamaterials. 2009;3:100.
|
[29] |
Akselrod GM, et al. Large-area metasurface perfect absorbers from visible to near-infrared. Adv Mater. 2015;27(48):8028–34.
|
[30] |
Yao Y, et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett. 2014;14(11):6526–32.
|
[31] |
Li J, et al. Bidirectional perfect absorber using free substrate plasmonic metasurfaces. Adv Optical Mater. 2017;5(12):1700152.
|
[32] |
Guo W, et al. Ultra-broadband infrared metasurface absorber. Opt Express. 2016;24(18):20586–92.
|
[33] |
Bossard JA, et al. Near-ideal optical metamaterial absorbers with super-octave bandwidth. ACS Nano. 2014;8(2):1517–24.
|
[34] |
Ding X, et al. Ultrathin Pancharatnam–berry metasurface with maximal cross-polarization efficiency. Adv Mater. 2015;27(7):1195–200.
|
[35] |
Cong L, et al. A perfect metamaterial polarization rotator. Appl Phys Lett. 2013;103(17):171107.
|
[36] |
Su P, et al. An ultra-wideband and polarization-independent Metasurface for RCS reduction. Sci Rep. 2016;6:20387.
|
[37] |
Cheng YZ, et al. Ultrabroadband reflective polarization convertor for terahertz waves. Appl Phys Lett. 2014;105(18):26.
|
[38] |
Pfeiffer C, Grbic A. Controlling vector Bessel beams with metasurfaces. Phys Rev Appl. 2014;2(4):044012.
|
[39] |
Yin X, et al. Photonic spin hall effect at metasurfaces. Science. 2013;339(6126):1405–7.
|
[40] |
Lin J, et al. Nanostructured holograms for broadband manipulation of vector beams. Nano Lett. 2013;13(9):4269–74.
|
[41] |
Yu P, et al. Generation of vector beams with arbitrary spatial variation of phase and linear polarization using plasmonic metasurfaces. Opt Lett. 2015;40(14):3229–32.
|
[42] |
Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater. 2014;13(2):139–50.
|
[43] |
Huang L, et al. Broadband hybrid holographic multiplexing with geometric metasurfaces. Adv Mater. 2015;27(41):6444–9.
|
[44] |
Zheng G, et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol. 2015;10(4):308.
|
[45] |
Shalaev MI, et al. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode. Nano Lett. 2015;15(9):6261–6.
|
[46] |
Zhang H, et al. High-efficiency dielectric metasurfaces for polarization-dependent terahertz wavefront manipulation. Adv Optical Mater. 2018;6(1):1700773.
|
[47] |
Luo J, et al. Highly efficient wavefront manipulation in terahertz based on plasmonic gradient metasurfaces. Opt Lett. 2014;39(8):2229–31.
|
[48] |
Cheng J, et al. Wave manipulation with designer dielectric metasurfaces. Opt Lett. 2014;39(21):6285–8.
|
[49] |
Liu X, et al. Experimental realization of a terahertz all-dielectric metasurface absorber. Opt Express. 2017;25(1):191–201.
|
[50] |
Ma G, et al. Acoustic metasurface with hybrid resonances. Nat Mater. 2014;13(9):873.
|
[51] |
Xie B, et al. Coding acoustic metasurfaces. Adv Mater. 2017;29(6):1603507.
|
[52] |
Xie Y, et al. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nat Commun. 2014;5:5553.
|
[53] |
Mei J, Wu Y. Controllable transmission and total reflection through an impedance-matched acoustic metasurface. New J Phys. 2014;16(12):123007.
|
[54] |
Esfahlani H, et al. Acoustic carpet cloak based on an ultrathin metasurface. Phys Rev B. 2016;94(1):014302.
|
[55] |
Zhao J, et al. Achieving flexible low-scattering metasurface based on randomly distribution of meta-elements. Opt Express. 2016;24(24):27849–57.
|
[56] |
Cui TJ, et al. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci Appl. 2014;3:e218.
|
[57] |
Cui TJ. Microwave metamaterials. Natl Sci Rev. 2018;5(2):134–6.
|
[58] |
Liu S, et al. Convolution operations on coding Metasurface to reach flexible and continuous controls of terahertz. Adv Sci. 2016;3(10):1600156.
|
[59] |
Cui T-J, et al. Information entropy of coding metasurface. Light Sci Appl. 2016;5:e16172.
|
[60] |
Wu RY, et al. Addition theorem for digital coding Metamaterials. Adv Optical Mater. 2018;6(5).
|
[61] |
Li J, et al. Amplitude modulation of anomalously reflected terahertz beams using all-optical active Pancharatnam-berry coding metasurfaces. Nanoscale. 2019;11(12):5746–53.
|
[62] |
Bao L, et al. Design of digital coding metasurfaces with independent controls of phase and amplitude responses. Appl Phys Lett. 2018;113(6):063502.
|
[63] |
Wu RY, et al. Digital Metasurface with phase code and reflection-transmission amplitude code for flexible full-space electromagnetic manipulations. Adv Optical Mater. 2019;7(8):1801429.
|
[64] |
Ma Q, et al. Beam-editing coding Metasurfaces based on polarization bit and orbital-angular-momentum-mode bit. Adv Optical Mater. 2017;5(23):1700548.
|
[65] |
Sui S, et al. Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces. Appl Phys Lett. 2016;109(1):014104.
|
[66] |
Iqhal S, et al. Polarization-selective dual-band digits coding metasurface for controls of transmitted waves. J Physics D-Appl Physics. 2018;51(28):285103.
|
[67] |
Ding G, et al. Dual-Helicity decoupled coding Metasurface for independent spin-to-orbital angular momentum conversion. Phys Rev Appl. 2019;11(4):044043.
|
[68] |
Han J, et al. 1-bit digital orbital angular momentum vortex beam generator based on a coding reflective metasurface. Optical Materials Express. 2018;8(11):3470–8.
|
[69] |
Zheng Q, et al. Efficient orbital angular momentum vortex beam generation by generalized coding metasurface. Appl Phys. 2019;125(2):136.
|
[70] |
Ji W, et al. High-efficiency and ultra-broadband asymmetric transmission metasurface based on topologically coding optimization method. Opt Express. 2019;27(3):2844–54.
|
[71] |
Katare KK, et al. Realization of Split beam antenna using transmission-type coding Metasurface and planar Lens. IEEE Trans Antennas Propag. 2019;67(4):2074–84.
|
[72] |
Li F-F, et al. Transmission and radar cross-section reduction by combining binary coding metasurface and frequency selective surface. Opt Express. 2018;26(26):33878–87.
|
[73] |
Liu S, et al. Anomalous refraction and nondiffractive Bessel-beam generation of terahertz waves through transmission-type coding Metasurfaces. Acs Photonics. 2016;3(10):1968–77.
|
[74] |
Shen Z, et al. Design of transmission-type coding metasurface and its application of beam forming. Appl Phys Lett. 2016;109(12):121103.
|
[75] |
Zhang L, et al. Transmission-reflection-integrated multifunctional coding Metasurface for full-space controls of electromagnetic waves. Adv Funct Mater. 2018;28(33):1802205.
|
[76] |
Wan X, et al. Field-programmable beam reconfiguring based on digitally-controlled coding metasurface. Sci Rep. 2016;6:20663.
|
[77] |
Zhang L, et al. Space-time-coding digital metasurfaces. Nat Commun. 2018;9(1):4334.
|
[78] |
Dai JY, et al. Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface. Light Sci Appl. 2018;7:90.
|
[79] |
Cui TJ, et al. Direct transmission of digital message via programmable coding metasurface. Research. 2019;2019:2584509.
|
[80] |
Zhao J, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems. Natl Sci Rev. 2019;6(2):231–8.
|
[81] |
Li L, et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat Commun. 2017;8:197.
|
[82] |
Li L, et al. Machine-learning reprogrammable metasurface imager. Nat Commun. 2019;10:1082.
|
[83] |
Li YB, et al. Transmission-type 2-bit programmable Metasurface for single-sensor and single-frequency microwave imaging. Sci Rep. 2016;6.
|
[84] |
Ma Q, et al. Controllable and programmable nonreciprocity based on detachable digital coding Metasurface. Adv Optical Mater. 2019;7:1901285.
|
[85] |
Zhang L, et al. Breaking reciprocity with space-time-coding digital Metasurfaces. Adv Mater. 2019;31(41):1904069.
|
[86] |
Ma Q, et al. Smart metasurface with self-adaptively reprogrammable functions. Light Sci Appl. 2019;8(1):1–12.
|
[87] |
Li L, et al. Intelligent metasurface imager and recognizer. Light Sci Appl. 2019;8(1):1–9.
|
[88] |
Gao L-H, et al. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces. Light Sci Appl. 2015;4:e324.
|
[89] |
Zhang XG, et al. Light-controllable digital coding Metasurfaces. Advanced Sci. 2018;5(11):1801028.
|
[90] |
Liu S, et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves. Light Sci Appl. 2016;5:e16076.
|
[91] |
Yu NF, et al. Light propagation with phase discontinuities: generalized Laws of reflection and refraction. Science. 2011;334(6054):333–7.
|
[92] |
Chen K, Zhang N, Ding G, Zhao J, Jiang T, Feng Y. Active Anisotropic Coding Metasurface with Independent Real-Time Reconfigurability for Dual Polarized Waves. Advanced Materials Technologies. 2019;19:1900930.
|
[93] |
Tan H, Deng J, Zhao R, Wu X, Li G, Huang L, Reviews P. A free-space orbital angular momentum multiplexing communication system based on a Metasurface. Laser Photonics Rev. 2019;13(6):1800278.
|
[94] |
Zhang L, et al. Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by Pancharatnam-berry coding Metasurfaces. ACS Appl Mater Interfaces. 2017;9(41):36447–55.
|
[95] |
Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948;27:379–423.
|
[96] |
Shcherbakov MR, Lemasters R, Fan Z, Song J, Lian T, Harutyunyan H, Shvets GJO. Time-variant metasurfaces enable tunable spectral bands of negative extinction. Optica. 2019;6(11):1441–2.
|
[97] |
Guo X, Ding Y, Duan Y, Ni X. Nonreciprocal Metasurface with space-time phase modulation. Light Sci Appl. 2019;8:1–9.
|
[98] |
Tse D. Fundamentals of wireless communication: Cambridge University Press; 2004.
|
[99] |
Hunt J, Driscoll T, Mrozack A. Metamaterial Apertures for Computational Imaging. Science. 339(6117):310–3.
|
[100] |
Xu X, Peng B, Li D. Flexible Visible–Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing. Nano Lett. 11(8):3232–8.
|
[101] |
Li Z, Zhang T, Wang Y, Kong W, Zhang J, Huang Y, Reviews P. Achromatic broadband super-resolution imaging by super-oscillatory metasurface. Laser Photonics Rev. 2018;12(10):1800064.
|
[102] |
Chen K, Ding G, Hu G, Jin Z, Zhao J, Feng Y, Qiu CWJAM. Directional Janus Metasurface. Adv Mater. 2019;32:e1906352.
|
[103] |
Duarte MF, et al. Single-pixel imaging via compressive sampling. IEEE Signal Process Mag. 2008;25:83.
|
[104] |
Zhao W, et al. Full-color hologram using spatial multiplexing of dielectric metasurface. Opt Lett. 2016;41:147.
|
[105] |
Ghanekar A, et al. High-rectification near-field thermal diode using phase lichange periodic nanostructure. Appl Phys Lett. 2016;109:123106.
|
[106] |
Wang L, Li L, Li Y, Zhang H, Cui TJ. Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface. Sci Rep. 2016;6:26959.
|
[107] |
Fromenteze T, et al. Computational polarimetric microwave imaging. Opt Express. 2017;25:27488–505.
|
[108] |
Neifeld MA, Shankar P. Feature-specific imaging. Appl Opt. 2003;42:3379–89.
|
[109] |
Pal HS, Ganotra D, Neifeld MA. Face recognition by using featurespecific imaging. Appl Opt. 2005;44:3378–794.
|
[110] |
Nayar SK, Branzoi V. Programmable imaging: toward a flexible camera. Int J Comput Vis. 2006;20:7–22.
|
[111] |
Kulkarni K, Turaga P. Reconstruction-free action inference from compressive imagers. IEEE Trans Pattern Anal Mach Intell. 2016;38:772–84.
|
[112] |
Liu S, Cui TJ. Concepts, working principles, and applications of coding and programmable Metamaterials. Adv Opt Mater. 2017;5(22):1700624.
|
[113] |
Cui TJ, et al. Information metamaterials and metasurfaces. J Mater Chem C. 2017;5(15):3644–68.
|
[114] |
Xiao J, et al. A survey on wireless indoor localization from the device perspective. ACM Comput Surv. 2016;49:25.
|
[115] |
Pu QF, et al. Whole-home gesture recognition using wireless signals. ACM, Miami, Florida: Proceedings of the 19th Annual International Conference on Mobile Computing & Networking; 2013. p. 27–38.
|
[116] |
Sadreazami H, et al. CapsFall: fall detection using ultra-wideband radar and capsule network. IEEE Access. 2019;7:55336–43.
|
[117] |
Zhao MM, et al. Through-wall human pose estimation using radio signals. IEEE, Salt Lake City, UT: Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2018. p. 7356–65.
|