[1] |
Assefa S, Xia F, Vlasov YA. Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects. Nature. 2010;464:80–4.
|
[2] |
Monroy E, Omnès F, Calle F. Wide-bandgap semiconductor ultraviolet photodetectors. Semicond Sci Technol. 2003;18(4):R33–51.
|
[3] |
Zhang D, Zheng W, Lin R, Li Y, Huang F. Ultrahigh EQE (15%) solar-blind UV photovoltaic detector with organic–inorganic Heterojunction via dual built-in fields enhanced photogenerated carrier separation efficiency mechanism. Adv Funct Mater. 2019;29(26):1900935.
|
[4] |
Chamberlain SG. Photosensitivity and scanning of silicon image detector arrays. IEEE J Solid State Circuits. 1969;4(6):333–42.
|
[5] |
Chamberlain SG, Lee JPY. A novel wide dynamic range silicon photodetector and linear imaging array. IEEE J Solid State Circuits. 1984;19(1):41–8.
|
[6] |
Zheng W, Huang F, Zheng R, Wu H. Low-dimensional structure vacuum-ultraviolet-sensitive (λ < 200 nm) Photodetector with fast-response speed based on high-quality AlN micro/nanowire. Adv Mater. 2015;27(26):3921–7.
|
[7] |
Yin J, Tan Z, Hong H, Wu J, Yuan H, Liu Y, et al. Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals. Nat Commun. 2018;9(1):3311.
|
[8] |
Liu H, Meng J, Zhang X, Chen Y, Yin Z, Wang D, et al. High-performance deep ultraviolet photodetectors based on few-layer hexagonal boron nitride. Nanoscale. 2018;10(12):5559–65.
|
[9] |
Zhou AF, Aldalbahi A, Feng P. Vertical metal-semiconductor-metal deep UV photodetectors based on hexagonal boron nitride nanosheets prepared by laser plasma deposition. Opt Mater Express. 2016;6(10):3286–92.
|
[10] |
Zheng W, Lin R, Ran J, Zhang Z, Ji X, Huang F. Vacuum-ultraviolet photovoltaic detector. ACS Nano. 2018;12(1):425–31.
|
[11] |
Qin Y, Li L, Zhao X, Tompa GS, Dong H, Jian G, et al. Metal–semiconductor–metal ε-Ga2O3 solar-blind Photodetectors with a record-high responsivity rejection ratio and their gain mechanism. ACS Photonics. 2020;7(3):812–20.
|
[12] |
Sun H, Li K-H, Castanedo CGT, Okur S, Tompa GS, Salagaj T, et al. HCl flow-induced phase change of α-, β-, and ε-Ga2O3 films grown by MOCVD. Cryst Growth Des. 2018;18(4):2370–6.
|
[13] |
Afanasev VV, Bassler M, Pensl G, Schulz M. Intrinsic SiC/SiO2 Interface States. Physica Status Solidi (a). 1997;162(1):321–37.
|
[14] |
Watanabe K, Taniguchi T, Kanda H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater. 2004;3(6):404–9.
|
[15] |
Yang W, Chen G, Shi Z, Liu C-C, Zhang L, Xie G, et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat Mater. 2013;12:792.
|
[16] |
Wei T, Islam SM, Jahn U, Yan J, Lee K, Bharadwaj S, et al. GaN/AlN quantum-disk nanorod 280 nm deep ultraviolet light emitting diodes by molecular beam epitaxy. Opt Lett. 2020;45(1):121–4.
|
[17] |
Michel J, Liu J, Kimerling LC. High-performance Ge-on-Si photodetectors. Nat Photonics. 2010;4:527.
|
[18] |
Shao Z, Chen Y, Chen H, Zhang Y, Zhang F, Jian J, et al. Ultra-low temperature silicon nitride photonic integration platform. Opt Express. 2016;24(3):1865–72.
|
[19] |
Weinberg ZA, Pollak RA. Hole conduction and valence-band structure of Si3N4 films on Si. Appl Phys Lett. 1975;27(4):254–5.
|
[20] |
Bauer J. Optical properties, band gap, and surface roughness of Si3N4. Physica status solidi (a). 1977;39(2):411–8.
|
[21] |
Chang H, Chen Z, Li W, Yan J, Hou R, Yang S, et al. Graphene-assisted quasi-van der Waals epitaxy of AlN film for ultraviolet light emitting diodes on nano-patterned sapphire substrate. Appl Phys Lett. 2019;114(9):091107.
|
[22] |
Li Y, Zhang D, Lin R, Zhang Z, Zheng W, Huang F. Graphene interdigital electrodes for improving sensitivity in a Ga2O3:Zn deep-ultraviolet photoconductive detector. ACS Appl Mater Interfaces. 2019;11(1):1013–20.
|
[23] |
Bertóti I, Varsányi G, Mink G, Székely T, Vaivads J, Millers T, et al. XPS characterization of ultrafine Si3N4 powders. Surf Interface Anal. 1988;12(10):527–30.
|
[24] |
Wada N, Solin SA, Wong J, Prochazka S. Raman and IR absorption spectroscopic studies on α, β, and amorphous Si3N4. J Non-Cryst Solids. 1981;43(1):7–15.
|
[25] |
Kumar M, Roul B, Bhat TN, Rajpalke MK, Kalghatgi AT, Krupanidhi SB. Carrier-transport studies of III-nitride/Si3N4/Si isotype heterojunctions. Physica status solidi (a). 2012;209(5):994–7.
|
[26] |
Oh S, Kim C-K, Kim J. High Responsivity β-Ga2O3 metal–semiconductor–metal solar-blind photodetectors with ultraviolet transparent graphene electrodes. ACS Photonics. 2018;5(3):1123–8.
|
[27] |
Kong W, Wu G, Wang K, Zhan T, Zou Y, Wang D, et al. Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application. Adv Mater. 2016;28(48):10725–31.
|
[28] |
Guo DY, Wu ZP, An YH, Guo XC, Chu XL, Sun CL, et al. Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors. Appl Phys Lett. 2014;105(2):023507–11.
|
[29] |
Dong H, Long S, Sun H, Zhao X, He Q, Qin Y, et al. Fast switching beta-Ga2O3 power MOSFET with a trench-gate structure. IEEE Electron Device Lett. 2019;40(9):1385–8.
|
[30] |
Koppens FHL, Mueller T, Avouris P, Ferrari A, Vitiello MS, Polini M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotechnol. 2014;9(10):780–93.
|
[31] |
Gritsenko VA, Morokov YN, Novikov YN. Electronic structure of amorphous Si3N4: experiment and numerical simulation. Appl Surf Sci. 1997;113-114:417–21.
|
[32] |
Sun H, Torres Castanedo CG, Liu K, Li K-H, Guo W, Lin R, et al. Valence and conduction band offsets of β-Ga2O3/AlN heterojunction. Appl Phys Lett. 2017;111(16):162105.
|
[33] |
Qin Y, Sun H, Long S, Tompa GS, Salagaj T, Dong H, et al. High-performance metal-organic chemical vapor deposition grown $\varepsilon$ -Ga2O3 solar-blind photodetector with asymmetric Schottky electrodes. IEEE Electron Device Lett. 2019;40(9):1475–8.
|
[34] |
Li C-T, Hsieh F, Wang L. Performance improvement of p-type silicon solar cells with thin silicon films deposited by low pressure chemical vapor deposition method. Sol Energy. 2013;88:104–9.
|