留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Underwater transmission of high-dimensional twisted photons over 55 meters

Yuan Chen Wei-Guan Shen Zhan-Ming Li Cheng-Qiu Hu Zeng-Quan Yan Zhi-Qiang Jiao Jun Gao Ming-Ming Cao Ke Sun Xian-Min Jin

Yuan Chen, Wei-Guan Shen, Zhan-Ming Li, Cheng-Qiu Hu, Zeng-Quan Yan, Zhi-Qiang Jiao, Jun Gao, Ming-Ming Cao, Ke Sun, Xian-Min Jin. Underwater transmission of high-dimensional twisted photons over 55 meters[J]. PhotoniX. doi: 10.1186/s43074-020-0002-5
引用本文: Yuan Chen, Wei-Guan Shen, Zhan-Ming Li, Cheng-Qiu Hu, Zeng-Quan Yan, Zhi-Qiang Jiao, Jun Gao, Ming-Ming Cao, Ke Sun, Xian-Min Jin. Underwater transmission of high-dimensional twisted photons over 55 meters[J]. PhotoniX. doi: 10.1186/s43074-020-0002-5
Yuan Chen, Wei-Guan Shen, Zhan-Ming Li, Cheng-Qiu Hu, Zeng-Quan Yan, Zhi-Qiang Jiao, Jun Gao, Ming-Ming Cao, Ke Sun, Xian-Min Jin. Underwater transmission of high-dimensional twisted photons over 55 meters[J]. PhotoniX. doi: 10.1186/s43074-020-0002-5
Citation: Yuan Chen, Wei-Guan Shen, Zhan-Ming Li, Cheng-Qiu Hu, Zeng-Quan Yan, Zhi-Qiang Jiao, Jun Gao, Ming-Ming Cao, Ke Sun, Xian-Min Jin. Underwater transmission of high-dimensional twisted photons over 55 meters[J]. PhotoniX. doi: 10.1186/s43074-020-0002-5

Underwater transmission of high-dimensional twisted photons over 55 meters

doi: 10.1186/s43074-020-0002-5
基金项目: 

National Key R&D Program of China (2019YFA0308700, 2017YFA0303700), the National Natural Science Foundation of China (NSFC) (11761141014, 61734005, 11690033), Science and Technology Commission of Shanghai Municipality (STCSM) (17JC1400403), Shanghai Municipal Education Commission (SMEC) (2017-01-07-00-02-E00049), Shanghai Talent Program.

Underwater transmission of high-dimensional twisted photons over 55 meters

Funds: 

National Key R&D Program of China (2019YFA0308700, 2017YFA0303700), the National Natural Science Foundation of China (NSFC) (11761141014, 61734005, 11690033), Science and Technology Commission of Shanghai Municipality (STCSM) (17JC1400403), Shanghai Municipal Education Commission (SMEC) (2017-01-07-00-02-E00049), Shanghai Talent Program.

  • 摘要: As an emerging channel resource for modern optics, big data, internet traffic and quantum technologies, twisted photons carrying orbital angular momentum (OAM) have been extended their applicable boundary in different media, such as optical fiber and atmosphere. Due to the extreme condition of loss and pressure, underwater transmission of twisted photons has not been well investigated yet. Especially, single-photon tests were all limited at a level of a few meters, and it is in practice unclear what will happen for longer transmission distances. Here we experimentally demonstrate the transmission of single-photon twisted light over an underwater channel up to 55 m, which reach a distance allowing potential real applications. For different order OAM states and their superposition, a good preservation of modal structure and topological charge are observed. Our results for the first time reveal the real transmission performance of twisted photons in a long-distance regime, representing a step further towards OAM-based underwater quantum communication.
      关键词:
    •  / 
    •  / 
    •  
  • [1] Allen L, et al.Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A. 1992; 45:8185.
    [2] Fickler R, et al.Quantum entanglement of high angular momenta. Science. 2012; 338:640–3.
    [3] Lavery MPJ, et al.Detection of a spinning object using light’s orbital angular momentum. Science. 2013; 341:537–40.
    [4] Wang J, et al.Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photon. 2012; 6:488–496.
    [5] Bozinovic N, et al.Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science. 2013; 340:1545–1548.
    [6] Baghdady J, et al.Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing. Opt Express. 2016; 24:9794–805.
    [7] Ren Y-X, et al.Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications. Sci Rep. 2016; 6:33306.
    [8] Zhao Y-F, et al.Performance evaluation of underwater optical communications using spatial modes subjected to bubbles and obstructions. Opt Lett. 2017; 42:4699–702.
    [9] Dada AC, et al.Experimental high dimensional two-photon entanglement and violations of generalized Bell inequalities. Nat Phys. 2011; 7:677–80.
    [10] Mirhosseini M, et al.High-dimensional quantum cryptography with twisted light. N J Phys. 2015; 17:033033.
    [11] Bouchard F, et al.High-dimensional quantum cloning and applications to quantum hacking. Sci Adv. 2017; 3:e1601915.
    [12] Erhard M, et al.Twisted photons: new quantum perspectives in high dimensions. Light Sci Appl. 2018; 7:17146.
    [13] Zhao N-B, et al.Capacity limits of spatially multiplexed free-space communication. Nat Photon. 2015; 9:822–8.
    [14] Cozzolino D, et al.Fiber based high-dimensional quantum communication with twisted photons. arXiv preprint arXiv:1803.10138. 2018. https://doi.org/10.1364/cleopr.2018.th5a.1.
    [15] Krenn M, et al.Communication with spatially modulated light through turbulent air across Vienna. N J Phys. 2014; 16:113028.
    [16] Krenn M, et al.Twisted light transmission over 143 km. Proc Natl Acad Sci. 2016; 113:8–53.
    [17] Lavery MPJ, et al.Free-space propagation of high-dimensional structured optical fields in an urban environment. Sci Adv. 2017; 3:e1700552.
    [18] Rodenburg B, et al.Influence of atmospheric turbulence on states of light carrying orbital angular momentum. Opt Lett. 2012; 37:3735–7.
    [19] Ji L, et al.Towards quantum communications in free-space seawater. Opt Express. 2017; 25:5–806.
    [20] Austin RW, Halikas G. The index of refraction of seawater. SIO/University of California. 1976; SIO No:76–1. https://doi.org/10.21236/ada024800.
    [21] Bouchard F, et al.Quantum cryptography with twisted photons through an outdoor underwater channel. Opt Express. 2018; 26:3–73.
    [22] Shi P, Zhao SC, Li WD, Gu YJ. Preprint. 2014. http://arxiv.org/abs/1402.4666v2.
    [23] Lo HK, et al.Decoy state quantum key distribution. Phys Rev Lett. 2005; 94:230504.
    [24] Peng CZ, et al.Experimental long-distance decoy-state quantum key distribution based on polarization encoding. Phys Rev Lett. 2007; 98:010505.
    [25] Jack B, et al.Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular momentum state spaces. Phys Rev A. 2010; 81:043844.
    [26] Padgett MJ, et al.Poincaré-sphere equivalent for light beams containing orbital angular momentum. Opt Lett. 1999; 24:430–2.
    [27] Mamaev AV, et al.Decay of high order optical vortices in anisotropic nonlinear optical media. Phys Rev Lett. 1997; 78.
    [28] Dennis MR. Rows of optical vortices from elliptically perturbing a high-order beam. Opt Lett. 2006; 31:1325–7.
    [29] Kumar A, et al.Crafting the core asymmetry to lift the degeneracy of optical vortices. Opt Express. 2011; 19:6182–90.
    [30] Bahl M, Senthilkumaran P. Focal plane internal energy flows of singular beams in astigmatically aberrated low numerical aperture systems. J Opt Soc Am A. 2014; 31:2046–54.
    [31] Wozniak B, Dera J. Light absorption in sea water. Series: atmospheric and oceanographic sciences library, vol. 33, VIII.Springer; 2007, p. 452.
    [32] Cochenour BM, Mullen LJ, Laux AE. Characterization of the beam-spread function for underwater wireless optical communications links. IEEE J Ocean Eng. 2008; 33:513–21.
  • 加载中
计量
  • 文章访问数:  136
  • HTML全文浏览量:  2
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-31
  • 录用日期:  2019-12-30
  • 网络出版日期:  2020-03-04

目录

    /

    返回文章
    返回