[1] |
Bastug E, Bennis M, Medard M, Debbah M. Toward interconnected virtual reality: opportunities, challenges, and enablers. IEEE Commun Mag. 2017;55:110–7.
|
[2] |
Wakunami K, Hsieh PY, Oi R, Senoh T, Sasaki H, Ichihashi Y, Okui M, Huang YP, Yamamoto K. Projection-type see-through holographic three-dimensional display. Nat Commun. 2016;7:12954.
|
[3] |
Hirayama R, Plasencia DM, Masuda N, Subramanian S. A volumetric display for visual, tactile and audio presentation using acoustic trapping. Nature. 2019;575:320–3.
|
[4] |
Griffiths AD, Herrnsdorf J, Strain MJ, Dawson MD. Scalable visible light communications with a micro-LED array projector and high-speed smartphone camera. Opt Express. 2019;27:15585–94.
|
[5] |
Zhang H, Li L, Mccray DL, Yao D, Yi AY. A microlens array on curved substrates by 3D micro projection and reflow process. Sens Actuators A Phys. 2012;179:242–50.
|
[6] |
Wang Z, Chen RS, Zhang X, Lv GQ, Feng QB, Hu ZA, Ming H, Wang AT. Resolution-enhanced holographic stereogram based on integral imaging using moving array lenslet technique. Appl Phys Lett. 2018;113:221109.
|
[7] |
Li G, Lee D, Jeong Y, Cho J, Lee B. Holographic display for see-through augmented reality using mirror-lens holographic optical element. Opt Lett. 2016;41:2486–9.
|
[8] |
Wang YJ, Lin YH. An optical system for augmented reality with electrically tunable optical zoom function and image registration exploiting liquid crystal lenses. Opt Express. 2019;27:21163–72.
|
[9] |
Li M, Lavest JM. Some aspects of zoom lens camera calibration. IEEE T Pattern Anal. 1996;18:1105–10.
|
[10] |
Park J, Lee K, Park Y. Ultrathin wide-angle large-area digital 3D holographic display using a non-periodic photon sieve. Nat Commun. 2019;10:1304.
|
[11] |
Kozacki T, Kujawińska M, Finke G, Zaperty W, Hennelly B. Holographic capture and display systems in circular configurations. J Disp Technol. 2012;8:225–32.
|
[12] |
Kakue T, Wagatsuma Y, Yamada S, Nishitsuji T, Endo Y, Nagahama Y, Hirayama R, Shimobaba T, Ito T. Review of real-time reconstruction techniques for aerial-projection holographic displays. Opt Eng. 2018;57:061621.
|
[13] |
Buckley E. Holographic projector using one lens. Opt Lett. 2010;35:3399–401.
|
[14] |
Wang D, Liu C, Wang QH. Holographic zoom system having controllable light intensity without undesirable light based on multifunctional liquid device. IEEE Access. 2019;7:99900–6.
|
[15] |
Ducin I, Shimobaba T, Makowski M, Kakarenko K, Kowalczyk A, Suszek J, Bieda M, Kolodziejczyk A, Sypek M. Holographic projection of images with step-less zoom and noise suppression by pixel separation. Opt Commun. 2015;340:131–5.
|
[16] |
Shimobaba T, Makowski M, Kakue T, Oikawa M, Okada N, Endo Y, Hirayama R, Ito T. Lensless zoomable holographic projection using scaled Fresnel diffraction. Opt Express. 2013;21:25285–90.
|
[17] |
Lin HC, Collings N, Chen MS, Lin YH. A holographic projection system with an electrically tuning and continuously adjustable optical zoom. Opt Express. 2012;20:27222–9.
|
[18] |
Lee JS, Kim YK, Won YH. Time multiplexing technique of holographic view and Maxwellian view using a liquid lens in the optical see-through head mounted display. Opt Express. 2018;26:2149–59.
|
[19] |
Yang SJ, Allen WE, Kauvar I, Andalman AS, Young NP, Kim CK, Marshel JH, Wetzstein G, Deisseroth K. Extended field-of-view and increased-signal 3D holographic illumination with time-division multiplexing. Opt Express. 2015;23:32573–81.
|
[20] |
Sando Y, Barada D, Yatagai T. Full-color holographic 3D display with horizontal full viewing zone by spatiotemporal-division multiplexing. Appl Opt. 2018;57:7622–6.
|
[21] |
Senoh T, Mishina T, Yamamoto K, Oi R, Kurita T. Viewing-zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination. J Disp Technol. 2011;7:12060091.
|
[22] |
Lin SF, Cao HK, Kim ES. Single SLM full-color holographic three dimensional video display based on image and frequency-shift multiplexing. Opt Express. 2019;27:15926–42.
|
[23] |
Malyuk AY, Ivanova NA. Varifocal liquid lens actuated by laser-induced thermal Marangoni forces. Appl Phys Lett. 2018;112:103701.
|
[24] |
Liu C, Wang D, Wang QH. Variable aperture with graded attenuation combined with adjustable focal length lens. Opt Express. 2019;27:14075–83.
|
[25] |
Dong L, Agarwal AK, Beebe DJ, Jiang H. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature. 2006;442:551–4.
|
[26] |
Ren H, Wu ST. Variable-focus liquid lens. Opt Express. 2007;15:5931–6.
|
[27] |
Chen MS, Collings N, Lin HC, Lin YH. A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction. J Disp Technol. 2014;10:450–5.
|
[28] |
Lee JS, Kim YK, Lee MY, Won YH. Enhanced see-through near-eye display using time-division multiplexing of a Maxwellian-view and holographic display. Opt Express. 2019;27:689–701.
|
[29] |
Wang D, Liu C, Wang QH. Method of chromatic aberration elimination in holographic display based on zoomable liquid lens. Opt Express. 2019;27:10058–66.
|