[1] |
Udem T, Holzwarth R, Hänsch TW. Optical frequency metrology. Nature. 2002;416:233–7.
|
[2] |
Mandon J, Guelachvili G, Picqué N. Fourier transform spectroscopy with a laser frequency comb. Nat Photon. 2009;3:99–102.
|
[3] |
Yokoyama S, Yokoyama T, Hagihara Y, Araki T, Yasui T. A distance meter using a terahertz intermode beat in an optical frequency comb. Opt. Express. 2009;17:17324–37.
|
[4] |
Diddams SA, Hollberg L, Mbele V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature. 2007;445:627–30.
|
[5] |
Boudreau S, Levasseur S, Perilla C, Roy S, Genest J. Chemical detection with hyperspectral lidar using dual frequency combs, opt. Express. 2013;21:7411–8.
|
[6] |
Ideguchi T, Holzner S, Bernhardt B, Guelachvili G, Picqué N, Hänsch TW. Coherent Raman spectro-imaging with laser frequency combs. Nature. 2013;502:355–8.
|
[7] |
Rieker GB, Giorgetta FR, Swann WC, Kofler J, Zolot AM, Sinclair LC, Tans PP. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths. Optica. 2014;1:290–8.
|
[8] |
Thorpe MJ, Balslev-Clausen D, Kirchner MS, Ye J. Human breath analysis via cavity enhanced optical frequency comb spectroscopy. Opt. Express. 2008;16:2387–97.
|
[9] |
Coddington I, Newbury N, Swann W. Dual-comb spectroscopy. Optica. 2016;3:414–26.
|
[10] |
Ideguchi T. Dual-Comb Spectroscopy. Opt Photon News. 2017;28:32–9.
|
[11] |
Schiller S. Spectrometry with frequency combs. Opt Lett. 2002;27:766–8.
|
[12] |
Okubo S, Iwakuni K, Inaba H, Hosaka K, Onae A, Sasada H, Hong FL. Ultra-broadband dual-comb spectroscopy across 1.0–1.9 μm. Appl Phys Express. 2015;8:082402.
|
[13] |
Zolot AM, Giorgetta FR, Baumann E, Nicholson JW, Swann WC, Coddington I, Newbury NR. Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz. Opt Lett. 2012;37:638–40.
|
[14] |
Coddington I, Swann WC, Newbury NR. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys Rev Lett. 2008;100:013902.
|
[15] |
Coddington I, Swann WC, Newbury NR. Coherent dual-comb spectroscopy at high signal-to-noise ratio. Phys Rev A. 2010;82:043817.
|
[16] |
Chen Z, Yan M, Hänsch TW, Picqué N. A phase-stable dual-comb interferometer. Nat Commun. 2018;9:3035.
|
[17] |
Ideguchi T, Poisson A, Guelachvili G, Picqué N, Hänsch TW. Adaptive real-time dual-comb spectroscopy. Nat Commun. 2014;5:3375.
|
[18] |
Roy J, Deschênes JD, Potvin S, Genest J. Continuous real-time correction and averaging for frequency comb interferometry. Opt Express. 2012;20:21932–9.
|
[19] |
Giaccari P, Deschênes JD, Saucier P, Genest J, Tremblay P. Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method. Opt Express. 2008;16:4347–65.
|
[20] |
Newbury NR, Swann WC. Low-noise fiber-laser frequency combs. J Opt Soc Am B. 2007;24:1756–70.
|
[21] |
Washburn BR, Newbury NR. Phase, timing, and amplitude noise on supercontinua generated in microstructure fiber. Opt Express. 2004;12:2166–75.
|
[22] |
Zhao X, Hu G, Zhao B, Li C, Pan Y, Liu Y, Yasui T, Zheng Z. Picometer-resolution dual-comb spectroscopy with a free-running fiber laser. Opt Express. 2016;24:21833–45.
|
[23] |
Ideguchi T, Nakamura T, Kobayashi Y, Goda K. Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy. Optica. 2016;3:748–53.
|
[24] |
Long DA, Fleisher AJ, Douglass KO, Maxwell SE, Bielska K, Hodges JT, Plusquellic DF. Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser. Opt Lett. 2014;39:2688–90.
|
[25] |
Millot G, Pitois S, Yan M, Hovhannisyan T, Bendahmane A, Hänsch TW, Picqué N. Frequency-agile dual-comb spectroscopy. Nat Photon. 2016;10:27–30.
|
[26] |
Morohashi I, Sakamoto T, Sotobayashi H, Kawanishi T, Hosako I, Tsuchiya M. Widely repetition-tunable 200 fs pulse source using a Mach–Zehnder-modulator-based flat comb generator and dispersion-flattened dispersion-decreasing fiber. Opt Lett. 2008;33:1192–4.
|
[27] |
Manzoni C, Cirmi G, Brida D, Silvestri SD, Cerullo G. Optical-parametric-generation process driven by femtosecond pulses: timing and carrier-envelope phase properties. Phys Rev A. 2009;79:033818.
|
[28] |
Linnenbank H, Steinle T, Giessen H. Narrowband cw injection seeded high power femtosecond double-pass optical parametric generator at 43 MHz: gain and noise dynamics. Opt. Express. 2016;24:19558–66.
|
[29] |
Chen W, Fan J, Ge A, Song H, Song Y, Liu B, Hu M. Intensity and temporal noise characteristics in femtosecond optical parametric amplifiers. Opt Express. 2017;25:31263–72.
|
[30] |
Lomsadze B, Smith BC, Cundiff ST. Tri-comb spectroscopy. Nat Photon. 2018;12:676–80.
|
[31] |
Rothman LS, Gordon IE, Babikov Y, Barbe A, Chris Benner D, Bernath PF, Birk M, Bizzocchi L, Boudon V, Brown LR, Campargue A, Chance K, Cohen EA, Coudert LH, Devi VM, Drouin BJ, Fayt A, Flaud J-M, Gamache RR, Harrison JJ, Hartmann J-M, Hill C, Hodges JT, Jacquemart D, Jolly A, Lamouroux J, Le Roy RJ, Li G, Long DA, Lyulin OM, Mackie CJ, Massie ST, Mikhailenko S, Müller HSP, Naumenko OV, Nikitin AV, Orphal J, Perevalov V, Perrin A, Polovtseva ER, Richard C, Smith MAH, Starikova E, Sung K, Tashkun S, Tennyson J, Toon GC, Tyuterev VG, Wagner G. The HITRAN 2012 molecular spectroscopic database. J Quant Spectrosc Radiat Transf. 2013;130:4–50.
|
[32] |
Gu C, Zuo Z, Luo D, Peng D, Di Y, Zou X, Yang L, Li W. High-repetition-rate femtosecond mid-infrared pulses generated by nonlinear optical modulation of CW QCLs and ICLs. Opt Lett. 2019;44:5848–51.
|