留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Zhengzhong Huang, Pasquale Memmolo, Pietro Ferraro, Liangcai Cao. Dual-plane coupled phase retrieval for non-prior holographic imaging[J]. PhotoniX. doi: 10.1186/s43074-021-00046-w
Citation: Zhengzhong Huang, Pasquale Memmolo, Pietro Ferraro, Liangcai Cao. Dual-plane coupled phase retrieval for non-prior holographic imaging[J]. PhotoniX. doi: 10.1186/s43074-021-00046-w

doi: 10.1186/s43074-021-00046-w

Dual-plane coupled phase retrieval for non-prior holographic imaging

Funds: We thank Yunhui Gao for imaging the sample.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Yaroslavski LP, Merzlyakov NS. Methods of Digital Holography. New York: Consultants Bureau; 1980.
    [2] Goodman JW. Introduction to Fourier optics. 3rd ed. Roberts & Company Publishers; 2005.
    [3] Cotte Y, Toy F, Jourdain P, Pavillon N, Boss D, Magistretti P, et al. Marker-free phase nanoscopy. Nat. Photonics. 2013;7:113–7.
    [4] Park YK, Depeursinge C, Popescu G. Quantitative phase imaging in biomedicine. Nat. Photonics. 2018;12:578–89.
    [5] Marquet P, Rappaz B, Magistretti PJ, Cuche E, Emery Y, Colomb T, et al. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett. 2005;30:468–70.
    [6] Kemper B, von Bally G. Digital holographic microscopy for live cell applications and technical inspection. Appl. Opt. 2008;47:A52–61.
    [7] Fan Y, Li JJ, Lu LP, Sun JS, Hu Y, Zhang JL, et al. Smart computational light microscopes (SCLMs) of smart computational imaging laboratory (SCILab). PhotoniX. 2021;2:19.
    [8] Mosk AP, Lagendijk A, Lerosey G, Fink M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics. 2012;6:283–92.
    [9] Park JH, Park J, Lee KR, Park YK. Disordered optics: exploiting multiple light scattering and wavefront shaping for nonconventional optical elements. Adv. Mater. 2019;32:1903457.
    [10] Memmolo P, Miccio L, Paturzo M, Caprio GD, Coppola G, Netti PA, et al. Recent advances in holographic 3D particle tracking. Adv. Opt. Photon. 2015;7:713–55.
    [11] Su TW, Xue L, Ozcan A. High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories. Proc. Natl. Acad. Sci. USA. 2012;109:16018–22.
    [12] Bhaduri B, Edwards C, Pham H, Zhou RJ, Nguyen TH, Goddard LL, et al. Diffraction phase microscopy: principles and applications in materials and life sciences. Adv. Opt. Photon. 2014;6:57–119.
    [13] Toda K, Tamamitsu M, Ideguchi T. Adaptive dynamic range shift (ADRIFT) quantitative phase imaging. Light: Sci. Appl. 2021;10:1.
    [14] Shaked NT, Micó V, Trusiak M, Kuś A, Mirsky SK. Off-axis digital holographic multiplexing for rapid wavefront acquisition and processing. Adv. Opt. Photon. 2020;12:556–611.
    [15] Girshovitz P, Shaked NT. Doubling the field of view in off-axis low-coherence interferometric imaging. Light.: Sci. Appl. 2014;3:e151.
    [16] Bianco V, Mandracchia B, Marchesano V, Pagliarulo V, Olivieri F, Coppola S, et al. Endowing a plain fluidic chip with micro-optics: a holographic microscope slide. Light: Sci. Appl. 2017;6:e17055.
    [17] Baek YS, Lee KR, Shin S, Park YK. Kramers–Kronig holographic imaging for high-space-bandwidth product. Optica. 2019;6:45–51.
    [18] Herve L, Cioni O, Blandin P, Navarro F, Menneteau M, Bordy T, et al. Multispectral total-variation reconstruction applied to lens-free microscopy. Biomed. Opt. Express. 2018;9:5828–36.
    [19] Ryu D, Wang ZH, He K, Zheng GA, Horstmeyer R, Cossairt O. Subsampled phase retrieval for temporal resolution enhancement in lensless on-chip holographic video. Biomed. Opt. Express. 2017;8:1981–95.
    [20] Jiang S, Guan ML, Wu JM, Fang GC, Xu XZ, Jin DY, et al. Frequency-domain diagonal extension imaging. Adv. Photonics. 2020;2:036005.
    [21] Greenbaum A, Luo W, Su TW, Göröcs Z, Xue L, Isikman SO, et al. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy. Nat. Methods. 2012;9:889–95.
    [22] Greenbaum A, Zhang YB, Feizi A, Chung PL, Luo W, Kandukuri SR, et al. Wide-field computational imaging of pathology slides using lensfree on-chip microscopy. Sci. Transl. Med. 2014;6:267ra175.
    [23] Zhang YB, Shin Y, Sung K, Yang S, Chen H, Wang HD, et al. 3D imaging of optically cleared tissue using a simplified CLARITY method and on-chip microscopy. Sci. Adv. 2017;3:e1700553.
    [24] Latychevskaia T, Fink H–W. Solution to the twin image problem in holography. Phys. Rev. Lett. 2007; 98: 233901.
    [25] Huang ZZ, Cao LC. Bicubic interpolation and extrapolation iteration method for high resolution digital holographic reconstruction. Opt. Lasers. Eng. 2020;130:106090.
    [26] Khare K, Ali PTS, Joseph J. Single shot high resolution digital holography. Opt. Express. 2013;21:2581–91.
    [27] Singh M, Khare K. Single-shot full resolution region-of-interest (ROI) reconstruction in image plane digital holographic microscopy. J. Mod. Opt. 2018;65:1127–34.
    [28] Huang ZZ, Cao LC. Faithful digital holographic reconstruction using a sparse sensor array. Appl. Phys. Lett. 2020;117:031105.
    [29] Luo W, Greenbaum A, Zhang YB, Ozcan A. Synthetic aperture-based on-chip microscopy. Light: Sci. Appl. 2015;4:e261.
    [30] Zhang Y, Pedrini G, Osten W, Tiziani HJ. Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm. Opt. Express. 2003;11:3234–41.
    [31] Greenbaum A, Ozcan A. Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy. Opt. Express. 2012;20:3129–43.
    [32] Zheng GA, Horstmeyer R, Yang CH. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics. 2013;7:739–45.
    [33] Ou XZ, Horstmeyer R, Yang CH, Zheng GA. Quantitative phase imaging via Fourier ptychographic microscopy. Opt. Lett. 2013;38:4845–8.
    [34] Luo W, Zhang YB, Feizi A, Göröcs Z, Ozcan A. Pixel super-resolution using wavelength scanning. Light: Sci. Appl. 2016;5:e16060.
    [35] Wang HD, Göröcs Z, Luo W, Zhang YB, Rivenson Y, Bentolila LA, et al. Computational out-of-focus imaging increases the space–bandwidth product in lens-based coherent microscopy. Optica. 2016;3:1422–9.
    [36] Guo C, Shen C, Li Q, Tan JB, Liu ST, Kan XC, et al. A fast-converging iterative method based on weighted feedback for multi-distance phase retrieval. Sci. Rep. 2018;8:6436.
    [37] Latychevskaia T. Iterative phase retrieval for digital holography: tutorial. J. Opt. Soc. Am. A. 2019;36:D31–40.
    [38] Guo C, Liu XM, Kan XC, Zhang FL, Tan JB, Liu ST, et al. Lensfree on-chip microscopy based on dual-plane phase retrieval. Opt. Express. 2019;27:35216–29.
    [39] Guo C, Wei C, Tan JB, Chen K, Liu ST, Wu Q, et al. A review of iterative phase retrieval for measurement and encryption. Opt. Lasers. Eng. 2017;89:2–12.
    [40] Rodrigo JA, Duadi H, Alieva T, Zalevsky Z. Multi-stage phase retrieval algorithm based upon the gyrator transform. Opt. Express. 2010;18:1510–20.
    [41] Pedrini G, Osten W, Zhang Y. Wave-front reconstruction from a sequence of interferograms recorded at different planes. Opt. Lett. 2005;30:833–5.
    [42] Yamaguchi I, Zhang T. Phase-shifting digital holography. Opt. Lett. 1997;22:1268–70.
    [43] Awatsuji Y, Sasada M, Kubota T. Parallel quasi-phase shifting digital holography. Appl. Phys. Lett. 2004;85:1069–71.
    [44] Awatsuji Y, Fujii A, Kubota T, Matoba O. Parallel three-step phase-shifting digital holography. Appl. Opt. 2006;45:2995–3002.
    [45] Awatsuji Y, Tahara T, Kaneko A, Koyama T, Nishio K, Ura S, et al. Parallel two-step phase-shifting digital holography. Appl. Opt. 2008;47:D183–9.
    [46] Shen C, Liang MS, Pan A, Yang CH. Non-iterative complex wave-field reconstruction based on Kramers–Kronig relations. Photon. Res. 2021;9:1003–12.
    [47] Paturzo M, Memmolo P, Finizio A, Näsänen R, Naughton TJ, Ferraro P. Synthesis and display of dynamic holographic 3D scenes with real-world objects. Opt. Express. 2010;18:8806–15.
    [48] Shechtman Y, Eldar YC, Cohen O, Chapman HN, Miao JW, Segev M. Phase Retrieval with Application to Optical Imaging: A contemporary overview. IEEE Signal Process. Mag. 2015;32:87–109.
    [49] Wang FP, Wang DY, Rong L, Wang YX, Zhao J. Single-shot dual-wavelength in-line and off-axis hybrid digital holography. Appl. Phys. Lett. 2018;112:091903.
    [50] Rivenson Y, Wu YC, Wang HD, Zhang YB, Feizi A, Ozcan A. Sparsity-based multi-height phase recovery in holographic microscopy. Sci. Rep. 2016;6:37862.
    [51] Fannjiang A, Liao WJ. Phase retrieval with random phase illumination. J. Opt. Soc. Am. A. 2012;29:1847–59.
    [52] Kashter Y, Vijayakumar A, Rosen J. Resolving images by blurring: superresolution method with a scattering mask between the observed objects and the hologram recorder. Optica. 2017;4:932–9.
    [53] Kwon H, Arbabi E, Kamali S, Faraji-Dana M, Faraon A. Computational complex optical field imaging using a designed metasurface diffuser. Optica. 2018;5:924–31.
    [54] Eguchi A, Brewer J, Milster T. Optimization of random phase diversity for adaptive optics using an LCoS spatial light modulator. Appl. Opt. 2019;58:6834–40.
    [55] Waller L, Tian L, Barbastathis G. Transport of Intensity phase-amplitude imaging with higher order intensity derivatives. Opt. Express. 2010;18:12552–61.
    [56] Zuo C, Sun JS, Zhang JL, Hu Y, Chen Q. Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix. Opt. Express. 2015;23:14314–28.
    [57] Zuo C, Li JJ, Sun JS, Fan Y, Zhang JL, Lu LP, et al. Transport of intensity equation: a tutorial. Opt. Lasers. Eng. 2020;135:106187.
    [58] Ozsoy-Keskinbora C, Boothroyd CB, Dunin-Borkowski RE, Van Aken PA, Koch CT. Hybridization approach to in-line and off-axis (electron) holography for superior resolution and phase sensitivity. Sci. Rep. 2014;4:7020.
    [59] Orzó L. High speed phase retrieval of in-line holograms by the assistance of corresponding off-axis holograms. Opt. Express. 2015;23:16638–49.
    [60] Wang FP, Wang DY, Panezai S, Rong L, Wang YX, Zhao J. Imaging on the surfaces of an uneven thickness medium based on hybrid phase retrieval with the assistance of off-axis digital holography. Opt. Commun. 2017;401:59–65.
    [61] Zhao Y, Vandenrijt J-F, Kirkove M, Georges M. Iterative phase-retrieval-assisted off-axis terahertz digital holography. Appl. Opt. 2019;58:9208–16.
    [62] Guizar-Sicairos M, Thurman ST, Fienup JR. Efficient subpixel image registration algorithms. Opt. Lett. 2008;33:156–8.
    [63] Zhang JL, Sun JS, Chen Q, Li JJ, Zuo C. Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy. Sci. Rep. 2017;7:11777.
    [64] Shen C, Guo C, Geng Y, Tan JB, Liu ST, Liu ZJ. Noise-robust pixel-super-resolved multi-image phase retrieval with coherent illumination. J. Opt. 2018;20:115703.
    [65] Dardikman G, Shaked NT. Is multiplexed off-axis holography for quantitative phase imaging more spatial bandwidth-efficient than on-axis holography? [Invited]. J. Opt. Soc. Am. A. 2019;36:A1–A11.
    [66] Dubois F, Schockaert C, Callens N, Yourassowsky C. Focus plane detection criteria in digital holography microscopy by amplitude analysis. Opt. Express. 2006;14:5895–908.
    [67] Huang ZZ, Kuang CF, Xu L, Cao LC. Multiplane digital holography based on extrapolation iterations. Opt. Commun. 2021;481:126526.
    [68] Zhang JL, Chen Q, Sun JS, Tian L, Zuo C. On a universal solution to the transport-of-intensity equation. Opt. Lett. 2020;45:3649–52.
    [69] Bioucas-Dias J, Valadão G. Phase unwrapping via graph cut. IEEE Trans. Image Process. 2007;16:698–709.
  • 加载中
计量
  • 文章访问数:  69
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-16
  • 录用日期:  2021-12-09
  • 网络出版日期:  2022-01-28

目录

    /

    返回文章
    返回