[1] |
Scarani V, et al. The security of practical quantum key distribution. Rev Mod Phys. 2009;81:1301–50.
|
[2] |
Pirandola S. Advances in quantum cryptography. Adv Opt Photon. 2020. https://doi.org/10.1364/AOP.361502.
|
[3] |
Brassard CB, a. G. Quantum cryptography: public key distribution and coin tossing. Proc IEEE Int Conf on Comp Sys Signal Process (ICCSSP). 1984:175–9.
|
[4] |
Shor PW, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol. Phys Rev Lett. 2000;85:441–4.
|
[5] |
Cerf NJ, Bourennane M, Karlsson A, Gisin N. Security of quantum key distribution using d-level systems. Phys Rev Lett. 2002;88:127902. https://doi.org/10.1103/PhysRevLett.88.127902.
|
[6] |
Korzh B, et al. Provably secure and practical quantum key distribution over 307 km of optical fibre. Nat Photonics. 2015;9:163.
|
[7] |
Diamanti E, Lo H-K, Qi B, Yuan Z. Practical challenges in quantum key distribution. Npj quantum. Inform. 2016;2:16025.
|
[8] |
Hwang WY. Quantum key distribution with high loss: toward global secure communication. Phys Rev Lett. 2003;91:057901. https://doi.org/10.1103/PhysRevLett.91.057901.
|
[9] |
Wang X-B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys Rev Lett. 2005;94:230503.
|
[10] |
Zhao Y, Qi B, Ma X, Lo HK, Qian L. Experimental quantum key distribution with decoy states. Phys Rev Lett. 2006;96:070502. https://doi.org/10.1103/PhysRevLett.96.070502.
|
[11] |
Braunstein SL, Pirandola S. Side-channel-free quantum key distribution. Phys Rev Lett. 2012;108:130502.
|
[12] |
Lo HK, Curty M, Qi B. Measurement-device-independent quantum key distribution. Phys Rev Lett. 2012;108:130503.
|
[13] |
Zhou Y-H, Yu Z-W, Wang X-B. Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys Rev A. 2016;93:042324. https://doi.org/10.1103/PhysRevA.93.042324.
|
[14] |
Yin HL, et al. Measurement-device-independent quantum key distribution over a 404 km optical Fiber. Phys Rev Lett. 2016;117:190501. https://doi.org/10.1103/PhysRevLett.117.190501.
|
[15] |
Lucamarini M, Yuan ZL, Dynes JF, Shields AJ. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature. 2018;557:400–3. https://doi.org/10.1038/s41586-018-0066-6.
|
[16] |
Ma X, Zeng P, Zhou H. Phase-matching quantum key distribution. Phy Rev X. 2018;8:031043. https://doi.org/10.1103/PhysRevX.8.031043.
|
[17] |
Wang X-B, Yu Z-W, Hu X-L. Twin-field quantum key distribution with large misalignment error. Phys Rev A. 2018;98. https://doi.org/10.1103/PhysRevA.98.062323.
|
[18] |
Chen JP, et al. Sending-or-not-sending with independent lasers: secure twin-field quantum key distribution over 509 km. Phys Rev Lett. 2020;124:070501. https://doi.org/10.1103/PhysRevLett.124.070501.
|
[19] |
Chen J-P, et al. Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nat Photonics. 2021;15:570–5. https://doi.org/10.1038/s41566-021-00828-5.
|
[20] |
Briegel HJ, Dür W, Cirac JI, Zoller P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys Rev Lett. 1998;81:5932–5.
|
[21] |
Kimble HJ. The quantum internet. Nature. 2008;453:1023–30. https://doi.org/10.1038/nature07127.
|
[22] |
Pirandola S. End-to-end capacities of a quantum communication network. Communications Physics. 2019;2:51.
|
[23] |
Specht HP, et al. A single-atom quantum memory. Nature. 2011;473:190–3.
|
[24] |
Pang X-L. A hybrid quantum memory–enabled network at room temperature. Sci Adv. 2020.
|
[25] |
de Riedmatten H, et al. Long-distance entanglement swapping with photons from separated sources. Phys Rev A. 2005;71.
|
[26] |
Sun Q-C, et al. Entanglement swapping over 100 km optical fiber with independent entangled photon-pair sources. Optica. 2017;4:1214.
|
[27] |
Chen T-Y, et al. Field test of a practical secure communication network with decoy-state quantum cryptography. Opt Express. 2009;17:6540–9.
|
[28] |
Peev M, et al. The SECOQC quantum key distribution network in Vienna. New J Phys. 2009;11:075001.
|
[29] |
Sasaki M, et al. Field test of quantum key distribution in the Tokyo QKD network. Opt Express. 2011;19:10387–409.
|
[30] |
Stucki D, et al. Long-term performance of the Swiss quantum quantum key distribution network in a field environment. New J Phys. 2011;13:123001.
|
[31] |
Chen T-Y, et al. Metropolitan all-pass and inter-city quantum communication network. Opt Express. 2010;18:27217–25.
|
[32] |
Herbauts I, Blauensteiner B, Poppe A, Jennewein T, Hübel H. Demonstration of active routing of entanglement in a multi-user network. Opt Express. 2013;21:29013–24.
|
[33] |
Chang XY, et al. Experimental realization of an entanglement access network and secure multi-party computation. Sci Rep. 2016;6:29453.
|
[34] |
Price A. Pragmatic quantum cryptography in next-generation photonic networks Ph. D thesis: University of Bristol; 2019.
|
[35] |
Townsend PD. Quantum cryptography on multiuser optical fibre networks. Nature. 1997;385:47–9.
|
[36] |
Iris C, Robert JY, Paul DT. Quantum information to the home. New J Phys. 2011;13:063039.
|
[37] |
Wengerowsky S, Joshi SK, Steinlechner F, Hübel H, Ursin R. An entanglement-based wavelength-multiplexed quantum communication network. Nature. 2018;564:225–8.
|
[38] |
Joshi, S. K. A trusted node–free eight-user metropolitan quantum communication network. science advances 6, eaba0959, doi: https://doi.org/10.1126/sciadv.aba0959 (2020).
|
[39] |
Liu X, et al. An entanglement-based quantum network based on symmetric dispersive optics quantum key distribution. APL Photonics. 2020;5:076104.
|
[40] |
Mower J, et al. High-dimensional quantum key distribution using dispersive optics. Phys Rev A. 2013;87:062322.
|
[41] |
Lee C, et al. Entanglement-based quantum communication secured by nonlocal dispersion cancellation. Phys Rev A. 2014;90:062331.
|
[42] |
Liu X, et al. Energy-time entanglement-based dispersive optics quantum key distribution over optical fibers of 20 km. Appl Phys Lett. 2019;114:141104. https://doi.org/10.1063/1.5089784.
|