留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Le-Yi Zhao, Hai Wang, Hai-Yu Wang, Qiang Zhou, Xu-Lin Zhang, Tong Cui, Lei Wang, Tian-Yu Liu, Yu-Xiao Han, Yang Luo, Yuan-Yuan Yue, Mu-Sen Song, Hong-Bo Sun. Ultrafast modulation of valley dynamics in multiple WS2 − Ag gratings strong coupling system[J]. PhotoniX. doi: 10.1186/s43074-022-00049-1
Citation: Le-Yi Zhao, Hai Wang, Hai-Yu Wang, Qiang Zhou, Xu-Lin Zhang, Tong Cui, Lei Wang, Tian-Yu Liu, Yu-Xiao Han, Yang Luo, Yuan-Yuan Yue, Mu-Sen Song, Hong-Bo Sun. Ultrafast modulation of valley dynamics in multiple WS2 − Ag gratings strong coupling system[J]. PhotoniX. doi: 10.1186/s43074-022-00049-1

doi: 10.1186/s43074-022-00049-1

Ultrafast modulation of valley dynamics in multiple WS2 − Ag gratings strong coupling system

Funds: This work was supported by the National Key Research and Development Program of China and the National Natural Science Foundation of China (NSFC) under Grants 21903035, 22073037, 21773087, 12074141, 61960206003 and Jilin Provincial Science and Technology Development Project (20210509038RQ).
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Mak KF, He K, Shan J, Heinz TF. Control of valley polarization in monolayer MoS2 by optical helicity. Nat Nanotechnol. 2012;7:494–8.
    [2] Li Y, Rao Y, Mak KF, You Y, Wang S, Dean CR, et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 2013;13:3329–33.
    [3] Podzorov V, Gershenson ME, Kloc C, Zeis R, Bucher E. High-mobility field-effect transistors based on transition metal dichalcogenides. Appl Phys Lett. 2004;84:3301–3.
    [4] Yu L, Lee Y-H, Ling X, Santos EJG, Shin YC, Lin Y, et al. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett. 2014;14:3055–63.
    [5] Yang LY, Chen WB, McCreary KM, Jonker BT, Lou J, Crooker SA. Spin coherence and dephasing of localized electrons in monolayer MoS2. Nano Lett. 2015;15:8250–4.
    [6] Yu H, Cui X, Xu X, Yao W. Valley excitons in two-dimensional semiconductors. Natl Sci Rev. 2015;2:57–70.
    [7] Selig M, Katsch F, Schmidt R, de Vasconcellos SM, Bratschitsch R, Malic E, et al. Ultrafast dynamics in monolayer transition metal dichalcogenides: interplay of dark excitons, phonons, and intervalley exchange. Phys Rev Res. 2019;1:022007.
    [8] Xu S, Si C, Li Y, Gu B-L, Duan W. Valley depolarization dynamics in monolayer transition-metal dichalcogenides: role of the satellite valley. Nano Lett. 2021;21:1785–91.
    [9] Amo A, Liew TCH, Adrados C, Houdre R, Giacobino E, Kavokin AV, et al. Exciton-polariton spin switches. Nat Photonics. 2010;4:361–6.
    [10] Mak KF, McGill KL, Park J, McEuen PL. The valley hall effect in MoS2 transistors. Science. 2014;344:1489–92.
    [11] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nat Nanotechnol. 2011;6:147–50.
    [12] Ling H, Li R, Davoyan AR. All van der Waals integrated nanophotonics with bulk transition metal dichalcogenides. ACS Photonics. 2021;8:721–30.
    [13] Geim AK, Grigorieva IV. Van der Waals heterostructures. Nature. 2013;499:419–25.
    [14] Pei J, Yang J, Yildirim T, Zhang H, Lu Y. Many-body complexes in 2D semiconductors. Adv Mater. 2019;31:1706945.
    [15] Yue Y-Y, Wang Z, Wang L, Wang H-Y, Chen Y, Wang D, et al. Many-particle induced band renormalization processes in few- and mono-layer MoS2. Nanotechnology. 2021;32:135208.
    [16] Yang GC, Shen QX, Niu YJ, Wei H, Bai BF, Mikkelsen MH, et al. Unidirectional, ultrafast, and bright spontaneous emission source enabled by a hybrid plasmonic nanoantenna. Laser Photonics Rev. 2020;14:8.
    [17] Amani M, Lien D-H, Kiriya D, Xiao J, Azcatl A, Noh J, et al. Near-unity photoluminescence quantum yield in MoS2. Science. 2015;350:1065–8.
    [18] Kasprzak J, Richard M, Kundermann S, Baas A, Jeambrun P, Keeling JMJ, et al. Bose–Einstein condensation of exciton polaritons. Nature. 2006;443:409–14.
    [19] Deng H, Haug H, Yamamoto Y. Exciton-polariton Bose-Einstein condensation. Rev Mod Phys. 2010;82:1489–537.
    [20] Ye Y, Wong ZJ, Lu X, Ni X, Zhu H, Chen X, et al. Monolayer excitonic laser. Nat Photonics. 2015;9:733–7.
    [21] Wu S, Buckley S, Schaibley JR, Feng L, Yan J, Mandrus DG, et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature. 2015;520:69–72.
    [22] Georgiou K, Michetti P, Gai L, Cavazzini M, Shen Z, Lidzey DG. Control over energy transfer between fluorescent BODIPY dyes in a strongly coupled microcavity. ACS Photonics. 2018;5:258–66.
    [23] Liu S, Wu YZ, Liu X, del Aguila AG, Xuan FY, Chaturvedi A, et al. Light-matter interactions in high quality manganese-doped two-dimensional molybdenum diselenide. Sci China Mater. 2021;64:2507–18.
    [24] Chen Y-J, Cain JD, Stanev TK, Dravid VP, Stern NP. Valley-polarized exciton-polaritons in a monolayer semiconductor. Nat Photonics. 2017;11:431–5.
    [25] Flatten LC, Coles DM, He Z, Lidzey DG, Taylor RA, Warner JH, et al. Electrically tunable organic-inorganic hybrid polaritons with monolayer WS2. Nat Commun. 2017;8(1):1–5.
    [26] Mey O, Wall F, Schneider LM, Gunder D, Walla F, Soltani A, et al. Enhancement of the monolayer tungsten disulfide exciton photoluminescence with a two-dimensional material/air/gallium phosphide in-plane microcavity. ACS Nano. 2019;13:5259–67.
    [27] Lee B, Liu W, Naylor CH, Park J, Malek SC, Berger JS, et al. Electrical tuning of exciton-plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice. Nano Lett. 2017;17:4541–7.
    [28] Wen J, Wang H, Wang W, Deng Z, Zhuang C, Zhang Y, et al. Room-temperature strong light-matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals. Nano Lett. 2017;17:4689–97.
    [29] Cuadra J, Baranov DG, Wersall M, Verre R, Antosiewicz TJ, Shegai T. Observation of tunable charged exciton polaritons in hybrid monolayer WS2-plasmonic nanoantenna system. Nano Lett. 2018;18:1777–85.
    [30] Shan HY, Yu Y, Wang XL, Luo Y, Zu S, Du BW, et al. Direct observation of ultrafast plasmonic hot electron transfer in the strong coupling regime. Light Sci Appl. 2019;8(1):1–9.
    [31] Wang JJ, Li H, Ma YT, Zhao MX, Liu WZ, Wang B, et al. Routing valley exciton emission of a WS(2)monolayer via delocalized Bloch modes of in-plane inversion-symmetry-broken photonic crystal slabs. Light Sci Appl. 2020;9:8.
    [32] Dufferwiel S, Lyons TP, Solnyshkov DD, Trichet AAP, Withers F, Schwarz S, et al. Valley-addressable polaritons in atomically thin semiconductors. Nat Photonics. 2017;11:497–501.
    [33] Sun Z, Gu J, Ghazaryan A, Shotan Z, Considine CR, Dollar M, et al. Optical control of room-temperature valley polaritons. Nat Photonics. 2017;11:491–6.
    [34] Lin HT, Chang CY, Cheng PJ, Li MY, Cheng CC, Chang SW, et al. Circular dichroism control of tungsten diselenide (WSe2) atomic layers with plasmonic metamolecules. ACS Appl Mater Interfaces. 2018;10:15996–6004.
    [35] Hu G, Hong X, Wang K, Wu J, Xu H-X, Zhao W, et al. Coherent steering of nonlinear chiral valley photons with a synthetic Au-WS2 metasurface. Nat Photonics. 2019;13:467–72.
    [36] Sun L, Wang C-Y, Krasnok A, Choi J, Shi J, Gomez-Diaz JS, et al. Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array. Nat Photonics. 2019;13:180–4.
    [37] Qiao Z, Wan Z, Xie G, Wang J, Qian L, Fan D. Multi-vortex laser enabling spatial and temporal encoding. PhotoniX. 2020;1:13.
    [38] Qian Z, Shan L, Zhang X, Liu Q, Ma Y, Gong Q, et al. Spontaneous emission in micro- or nanophotonic structures. PhotoniX. 2021;2:21.
    [39] Wang J, Li H, Ma Y, Zhao M, Liu W, Wang B, et al. Routing valley exciton emission of a WS2 monolayer via delocalized Bloch modes of in-plane inversion-symmetry-broken photonic crystal slabs. Light Sci Appl. 2020;9:148.
    [40] Liu WZ, Wang B, Zhang YW, Wang JJ, Zhao MX, Guan F, et al. Circularly polarized states spawning from bound states in the continuum. Phys Rev Lett. 2019;123:6.
    [41] Puchert RP, Hofmann FJ, Angerer HS, Vogelsang J, Bange S, Lupton JM. Linearly polarized electroluminescence from MoS2 monolayers deposited on metal nanoparticles: toward tunable room-temperature single-photon sources. Small. 2021;17:8.
    [42] Li JL, Nie CB, Sun FY, Tang LL, Zhang ZJ, Zhang JD, et al. Enhancement of the photoresponse of monolayer MoS2 photodetectors induced by a nanoparticle grating. ACS Appl Mater Interfaces. 2020;12:8429–36.
    [43] Shi J, Liang W-Y, Raja SS, Sang Y, Zhang X-Q, Chen C-A, et al. Plasmonic enhancement and manipulation of optical nonlinearity in monolayer tungsten disulfide. Laser Photonics Rev. 2018;12:1800188.
    [44] Li ZW, Li Y, Han TY, Wang XL, Yu Y, Tay B, et al. Tailoring MoS2 exciton-plasmon interaction by optical spin-orbit coupling. ACS Nano. 2017;11:1165–71.
    [45] Chervy T, Azzini S, Lorchat E, Wang S, Gorodetski Y, Hutchison JA, et al. Room temperature chiral coupling of valley excitons with spin-momentum locked surface plasmons. ACS Photonics. 2018;5:1281–7.
    [46] Li Z, Liu C, Rong X, Luo Y, Cheng H, Zheng L, et al. Tailoring MoS2 valley-polarized photoluminescence with super chiral near-field. Adv Mater. 2018;30(34):1801908.
    [47] Guddala S, Bushati R, Li M, Khanikaev AB, Menon VM. Valley selective optical control of excitons in 2D semiconductors using a chiral metasurface invited. Opt Mater Express. 2019;9:536–43.
    [48] Wu ZL, Li JG, Zhang XT, Redwing JM, Zheng YB. Room-temperature active modulation of valley dynamics in a monolayer semiconductor through chiral purcell effects. Adv Mater. 2019;31:9.
    [49] Li H, Wang J, Ma Y, Chu J, Cheng X, Shi L, et al. Enhanced directional emission of monolayer tungsten disulfide (WS2) with robust linear polarization via one-dimensional photonic crystal (PhC) slab. Nanophotonics. 2020;9:4337–45.
    [50] Wang L, Li Q, Wang HY, Huang JC, Zhang R, Chen QD, et al. Ultrafast optical spectroscopy of surface-modified silicon quantum dots: unraveling the underlying mechanism of the ultrabright and color-tunable photoluminescence. Light Sci Appl. 2015;4:245.
    [51] Wang H, Wang H-Y, Bozzola A, Toma A, Panaro S, Raja W, et al. Dynamics of strong coupling between J-aggregates and surface plasmon polaritons in subwavelength hole arrays. Adv Funct Mater. 2016;26:6198–205.
    [52] Wang H, Wang HY, Chen QD, Xu HL, Sun HB, Huang FC, et al. Hybrid-state dynamics of dye molecules and surface plasmon polaritons under ultrastrong coupling regime. Laser Photonics Rev. 2018;12:1700176.
    [53] Schmidt R, Berghäuser G, Schneider R, Selig M, Tonndorf P, Malić E, et al. Ultrafast coulomb-induced intervalley coupling in atomically thin WS2. Nano Lett. 2016;16:2945–50.
    [54] Andreou AG, Kalayjian ZK. Polarization imaging: principles and integrated polarimeters. IEEE Sensors J. 2002;2:566–76.
    [55] Bai J, Yao Y. Highly efficient anisotropic chiral plasmonic metamaterials for polarization conversion and detection. ACS Nano. 2021;15:14263–74.
    [56] Osorio CI, Coenen T, Brenny BJM, Polman A, Koenderink AF. Angle-resolved cathodoluminescence imaging polarimetry. ACS Photonics. 2016;3:147–54.
    [57] Berghäuser G, Bernal-Villamil I, Schmidt R, Schneider R, Niehues I, Erhart P, et al. Inverted valley polarization in optically excited transition metal dichalcogenides. Nat Commun. 2018;9:971.
    [58] Lu ZX, Sun LF, Xu GC, Zheng JY, Zhang Q, Wang JY, et al. Universal transfer and stacking of chemical vapor deposition grown two-dimensional atomic layers with water-soluble polymer mediator. ACS Nano. 2016;10:5237–42.
  • 加载中
计量
  • 文章访问数:  68
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-08
  • 录用日期:  2022-02-04
  • 网络出版日期:  2022-02-11

目录

    /

    返回文章
    返回