留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Binhao Wang, Jifang Mu. High-speed Si-Ge avalanche photodiodes[J]. PhotoniX. doi: 10.1186/s43074-022-00052-6
Citation: Binhao Wang, Jifang Mu. High-speed Si-Ge avalanche photodiodes[J]. PhotoniX. doi: 10.1186/s43074-022-00052-6

doi: 10.1186/s43074-022-00052-6

High-speed Si-Ge avalanche photodiodes

Funds: This work was supported by Shaanxi Province Overseas High-Level Talents Program, Chinese Academy of Sciences 100 Talents Program, Xi’an Institute of Optics and Precision Mechanics Start-Up Funding, and State Key Laboratory of Transient Optics and Photonics Independent Research Project.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • [1] Ishio H, Minowa J, Nosu K. Review and status of wavelength-division-multiplexing technology and its application (invited overview). J Light Technol. 1984; 2:448–63. https://doi.org/10.1109/JLT.1984.1073653.
    [2] Li H, Xuan Z, Titriku A, Li C, Yu K, Wang B, Shafik A, Qi N, Liu Y, Ding R, Baehr-Jones T, Fiorentino M, Hochberg M, Palermo S, Chiang PY. A 25 gb/s, 4.4 v-swing, ac-coupled ring modulator-based wdm transmitter with wavelength stabilization in 65 nm cmos. IEEE J Solid State Circ. 2015; 50:3145–59. https://doi.org/10.1109/JSSC.2015.2470524.
    [3] Liang D, Roshan-Zamir A, Fan YH, Zhang C, Wang B, Descos A, Shen W, Yu K, Li C, Fan G, Kurczveil G, Hu Y, Huang Z, Fiorentino M, Kumar S, Palermo SM, Beausoleil RG. Fully-integrated heterogeneous dml transmitters for high-performance computing. J Light Technol. 2020; 38:3322–37. https://doi.org/10.1109/JLT.2019.2959048.
    [4] Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner AE, Ramachandran S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science. 2013; 340:1545–8. https://doi.org/10.1126/science.1237861.
    [5] Wu X, Huang C, Xu K, Shu C, Tsang HK. Mode-division multiplexing for silicon photonic network-on-chip. J Lightwave Technol. 2017; 35:3223–8. https://doi.org/10.1109/JLT.2017.2677085.
    [6] Fazea Y, Mezhuyev V. Selective mode excitation techniques for mode-division multiplexing: A critical review. Opt Fiber Technol. 2018; 45:280–8. https://doi.org/10.1016/j.yofte.2018.08.004.
    [7] Puttnam BJ, Rademacher G, Luís RS. Space-division multiplexing for optical fiber communications. Optica. 2021; 8:1186. https://doi.org/10.1364/optica.427631.
    [8] Wang B, Huang Q, Chen K, Zhang J, Kurczveil G, Liang D, Palermo S, Tan MRT, Beausoleil RG, He S. Modulation on silicon for datacom: Past, present, and future. Prog Electromagn Res. 2019; 166:119–45.
    [9] Bernabé S, Wilmart Q, Hasharoni K, Hassan K, Thonnart Y, Tissier P, Désières Y, Olivier S, Tekin T, Szelag B. Silicon photonics for terabit/s communication in data centers and exascale computers. Solid State Electron. 2021;179. https://doi.org/10.1016/j.sse.2020.107928.
    [10] Dumais P, Goodwill DJ, Celo D, Jiang J, Zhang C, Zhao F, Tu X, Zhang C, Yan S, He J, Li M, Liu W, Wei Y, Geng D, Mehrvar H, Bernier E. Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package. J Lightwave Technol. 2018; 36:233–8. https://doi.org/10.1109/JLT.2017.2755578.
    [11] Seok TJ, Kwon K, Henriksson J, Luo J, Wu MC. Wafer-scale silicon photonic switches beyond die size limit. Optica. 2019; 6:490. https://doi.org/10.1364/optica.6.000490.
    [12] Shen Y, Harris NC, Skirlo S, Prabhu M, Baehr-Jones T, Hochberg M, Sun X, Zhao S, Larochelle H, Englund D, Soljacic M. Deep learning with coherent nanophotonic circuits. Nat Photonics. 2017; 11:441–6. https://doi.org/10.1038/nphoton.2017.93.
    [13] Harris NC, Carolan J, Bunandar D, Prabhu M, Hochberg M, Baehr-Jones T, Fanto ML, Smith AM, Tison CC, Alsing PM, Englund D. Linear programmable nanophotonic processors. Optica. 2018; 5:1623. https://doi.org/10.1364/optica.5.001623.
    [14] Sun J, Timurdogan E, Yaacobi A, Hosseini ES, Watts MR. Large-scale nanophotonic phased array. Nature. 2013; 493:195–9. https://doi.org/10.1038/nature11727.
    [15] Martin A, Dodane D, Leviandier L, Dolfi D, Naughton A, O’Brien P, Spuessens T, Baets R, Lepage G, Verheyen P, Heyn PD, Absil P, Feneyrou P, Bourderionnet J. Photonic integrated circuit-based fmcw coherent lidar. J Lightwave Technol. 2018; 36:4640–5. https://doi.org/10.1109/JLT.2018.2840223.
    [16] Wang Z, Yi S, Chen A, Zhou M, Luk TS, James A, Nogan J, Ross W, Joe G, Shahsafi A, Wang KX, Kats MA, Yu Z. Single-shot on-chip spectral sensors based on photonic crystal slabs. Nat Commun. 2019; 10:3–8. https://doi.org/10.1038/s41467-019-08994-5.
    [17] Pohl D, Escalé MR, Madi M, Kaufmann F, Brotzer P, Sergeyev A, Guldimann B, Giaccari P, Alberti E, Meier U, Grange R. An integrated broadband spectrometer on thin-film lithium niobate. Nat Photonics. 2020; 14:24–9. https://doi.org/10.1038/s41566-019-0529-9.
    [18] Lai YH, Suh MG, Lu YK, Shen B, Yang QF, Wang H, Li J, Lee SH, Yang KY, Vahala K. Earth rotation measured by a chip-scale ring laser gyroscope. Nat Photonics. 2020; 14:345–9. https://doi.org/10.1038/s41566-020-0588-y.
    [19] Dong P, Chen YK, Duan GH, Neilson DT. Silicon photonic devices and integrated circuits. Nanophotonics. 2014; 3:215–28. https://doi.org/10.1515/nanoph-2013-0023.
    [20] Su Y, Zhang Y, Qiu C, Guo X, Sun L. Silicon photonic platform for passive waveguide devices: Materials, fabrication, and applications. Adv Mater Technol. 2020; 5:1–19. https://doi.org/10.1002/admt.201901153.
    [21] Li C, Zhang M, Xu H, Tan Y, Shi Y, Dai D. Subwavelength silicon photonics for on-chip mode-manipulation. PhotoniX. 2021;2. https://doi.org/10.1186/s43074-021-00032-2.
    [22] Reed GT, Mashanovich G, Gardes FY, Thomson DJ. Silicon optical modulators. Nat Photonics. 2010; 4:518–26. https://doi.org/10.1038/nphoton.2010.179.
    [23] Benedikovic D, Virot L, Aubin G, Hartmann J. -m., Amar F, Roux XL, Alonso-Ramos C, Cassan É, Marris-Morini D, Fédéli J-M, Boeuf F, Szelag B, Vivien L. Silicon–germanium receivers for short-wave-infrared optoelectronics and communications. Nanophotonics. 2021; 10:1059–79. https://doi.org/10.1515/nanoph-2020-0547.
    [24] Liang D, Roelkens G, Baets R, Bowers JE. Hybrid integrated platforms for silicon photonics. Materials. 2010; 3:1782–802. https://doi.org/10.3390/ma3031782.
    [25] Liu AY, Srinivasan S, Norman J, Gossard AC, Bowers JE. Quantum dot lasers for silicon photonics. Photonics Res. 2015; 3:1–9. https://doi.org/10.1016/bs.semsem.2019.07.007.
    [26] Chen S, Li W, Wu J, Jiang Q, Tang M, Shutts S, Elliott SN, Sobiesierski A, Seeds AJ, Ross I, Smowton PM, Liu H. Electrically pumped continuous-wave iii-v quantum dot lasers on silicon. Nat Photonics. 2016; 10:307–11. https://doi.org/10.1038/nphoton.2016.21.
    [27] Wang Y, Chen S, Yu Y, Zhou L, Liu L, Yang C, Liao M, Tang M, Liu Z, Wu J, Li W, Ross I, Seeds AJ, Liu H, Yu S. Monolithic quantum-dot distributed feedback laser array on silicon. Optica. 2018; 5:528. https://doi.org/10.1364/optica.5.000528.
    [28] Komljenovic T, Huang D, Pintus P, Tran MA, Davenport ML, Bowers JE. Photonic integrated circuits using heterogeneous integration on silicon. Proc IEEE. 2018; 106:2246–57. https://doi.org/10.1109/JPROC.2018.2864668.
    [29] Jones R, Doussiere P, Driscoll JB, Lin W, Yu H, Akulova Y, Komljenovic T, Bowers JE. Heterogeneously integrated inp/silicon photonics: Fabricating fully functional transceivers. IEEE Nanotechnol Mag. 2019; 13:17–26. https://doi.org/10.1109/MNANO.2019.2891369.
    [30] Norman JC, Jung D, Zhang Z, Wan Y, Liu S, Shang C, Herrick RW, Chow WW, Gossard AC, Bowers JE. A review of high-performance quantum dot lasers on silicon. IEEE J Quantum Electron. 2019; 55:1–11. https://doi.org/10.1109/JQE.2019.2901508.
    [31] Liu W, Li M, Guzzon RS, Norberg EJ, Parker JS, Lu M, Coldren LA, Yao J. A fully reconfigurable photonic integrated signal processor. Nat Photonics. 2016; 10:190–5. https://doi.org/10.1038/nphoton.2015.281.
    [32] Lopez DP. Programmable integrated silicon photonics waveguide meshes: Optimized designs and control algorithms. IEEE J Sel Top Quant Electron. 2020;26. https://doi.org/10.1109/JSTQE.2019.2948048.
    [33] Bogaerts W, Pérez D, Capmany J, Miller DAB, Poon J, Englund D, Morichetti F, Melloni A. Programmable photonic circuits. Nature. 2020; 586:207–16. https://doi.org/10.1038/s41586-020-2764-0.
    [34] Sun C, Wade MT, Lee Y, Orcutt JS, Alloatti L, Georgas MS, Waterman AS, Shainline JM, Avizienis RR, Lin S, Moss BR, Kumar R, Pavanello F, Atabaki AH, Cook HM, Ou AJ, Leu JC, Chen YH, Asanović K, Ram RJ, Popović MA, Stojanović VM. Single-chip microprocessor that communicates directly using light. Nature. 2015; 528:534–8. https://doi.org/10.1038/nature16454.
    [35] Atabaki AH, Moazeni S, Pavanello F, Gevorgyan H, Notaros J, Alloatti L, Wade MT, Sun C, Kruger SA, Meng H, Qubaisi KA, Wang I, Zhang B, Khilo A, Baiocco CV, Popović MA, Stojanović VM, Ram RJ. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature. 2018; 556:349–53. https://doi.org/10.1038/s41586-018-0028-z.
    [36] Stojanović V, Ram RJ, Popović M, Lin S, Moazeni S, Wade M, Sun C, Alloatti L, Atabaki A, Pavanello F, Mehta N, Bhargava P. Monolithic silicon-photonic platforms in state-of-the-art cmos soi processes [invited]. Opt Express. 2018; 26:13106. https://doi.org/10.1364/oe.26.013106.
    [37] Luan HC, Lim DR, Lee KK, Chen KM, Sandland JG, Wada K, Kimerling LC. High-quality ge epilayers on si with low threading-dislocation densities. Appl Phys Lett. 1999; 75:2909–11. https://doi.org/10.1063/1.125187.
    [38] Hartmann JM, Damlencourt JF, Bogumilowicz Y, Holliger P, Rolland G, Billon T. Reduced pressure-chemical vapor deposition of intrinsic and doped ge layers on si(001) for microelectronics and optoelectronics purposes. J Cryst Growth. 2005; 274:90–9. https://doi.org/10.1016/j.jcrysgro.2004.10.042.
    [39] Hartmann JM, Abbadie A, Cherkashin N, Grampeix H, Clavelier L. Epitaxial growth of ge thick layers on nominal and 6 off si(0 0 1); ge surface passivation by si. Semicond Sci Technol. 24;2009. https://doi.org/10.1088/0268-1242/24/5/055002.
    [40] Wang B, Huang Z, Sorin WV, Zeng X, Liang D, Fiorentino M, Beausoleil RG. A low-voltage si-ge avalanche photodiode for high-speed and energy efficient silicon photonic links. J Lightwave Technol. 2020; 38:3156–63. https://doi.org/10.1109/JLT.2019.2963292.
    [41] Kumar A, Huang Z, Zeng X, Wang B, Liang D, Sorin W, Fiorentino M, Beausoleil RG, Palermo S. Design considerations for energy efficient dwdm pam4 transceivers employing avalanche photodiodes. Laser Photonics Rev. 2020;14. https://doi.org/10.1002/lpor.202000142.
    [42] Campbell JC. Recent advances in avalanche photodiodes. J Lightwave Technol. 2007; 25:109–21. https://doi.org/10.1364/ofc.1985.wc4.
    [43] Campbell JC. Recent advances in avalanche photodiodes. J Lightwave Technol. 2016; 34:12–4.
    [44] Huang M, Li S, Cai P, Hou G, Su TI, Chen W, Hong CY, Pan D. Germanium on silicon avalanche photodiode. IEEE J Sel Top Quant Electron. 2018;24. https://doi.org/10.1109/JSTQE.2017.2749958.
    [45] Campbell J. Evolution of low-noise avalanche photodetectors. IEEE J Sel Top Quant Electron. 2022; 28:1–11. https://doi.org/10.1109/JSTQE.2021.3092963.
    [46] McINTYRE RJ. Multiplication noise in uniform avalanche diodes. IEEE Trans Electron Devices. 1966; ED-13:164–8. https://doi.org/10.1109/T-ED.1966.15651.
    [47] Teich MC, Matsuo K, Saleh BEA. Excess noise factors for conventional and superlattice avalanche photodiodes and photomultiplier tubes. IEEE J Quantum Electron. 1986; 22:1184–93. https://doi.org/10.1109/JQE.1986.1073137.
    [48] Lenox C, Nie H, Yuan P, Kinsey G, Homles AL, Streetman BG, Campbell JC. Resonant-cavity ingaas-inalas avalanche photodiodes with gain-bandwidth product of 290 ghz. IEEE Photonics Technology Letters. 1999; 11:1162–4. https://doi.org/10.1109/68.784238.
    [49] Levine BF, Sacks RN, Ko J, Jazwiecki M, Valdmanis JA, Gunther D, Meier JH. A new planar ingaas-inalas avalanche photodiode. IEEE Photon Technol Lett. 2006; 18:1898–900. https://doi.org/10.1109/LPT.2006.881684.
    [50] Wang S, Sidhu R, Zheng XG, Li X, Sun X, Holmes AL, Campbell JC. Low-noise avalanche photodiodes with graded impact-ionization-engineered multiplication region. IEEE Photonics Technol Lett. 2001; 13:1346–8.
    [51] Wang S, Ma F, Li X, Sidhu R, Zheng XG, Sun X, Holmes AL, Campbell JC. Ultra-low noise avalanche photodiodes with a “centered-well” multiplication region. IEEE J Quant Electron. 2003; 39:375–378. https://doi.org/10.1109/JQE.2002.807183.
    [52] Lee CA, Logan RA, Batdorf RL, Kleimack JJ, Wiegmann W. Ionization rates for holes and electrons in silicon. Phys Rev. 1964; 134:761–73. https://doi.org/10.1103/PhysRev.105.1246.
    [53] Grant WN. Electron and hole ionization rates in epitaxial silicon at high electric fields. Solid State Electron. 1973; 16:1189–203. https://doi.org/10.1016/0038-1101(73)90147-0.
    [54] Shawon MJ, Saxena V. Rapid simulation of photonic integrated circuits using verilog-a compact models. IEEE Trans Circ Syst I Regular Pap. 2020; 67:3331–41. https://doi.org/10.1109/TCSI.2020.2983303.
    [55] Wang B, Sorin WV, Palermo S, Tan MRT. Comprehensive vertical-cavity surface-emitting laser model for optical interconnect transceiver circuit design. Opt Eng. 2016; 55:126103. https://doi.org/10.1117/1.oe.55.12.126103.
    [56] Zhu K, Saxena V, Kuang W. Compact verilog-a modeling of silicon traveling-wave modulator for hybrid cmos photonic circuit design. Midwest Symp Circ Syst. 2014;615–8. https://doi.org/10.1109/MWSCAS.2014.6908490.
    [57] Wu R, Chen C-H, Fedeli J-M, Fournier M, Cheng K-T, Beausoleil RG. Compact models for carrier-injection silicon microring modulators. Opt Express. 2015; 23:15545. https://doi.org/10.1364/OE.23.015545.
    [58] Wang B, Li C, Chen C-H, Yu K, Fiorentino M, Beausoleil RG, Palermo S. A compact verilog-a model of silicon carrier-injection ring modulators for optical interconnect transceiver circuit design. J Lightwave Technol. 2016; 34:2996–3005.
    [59] Shin MJ, Ban Y, Yu B-M, Rhim J, Member S, Zimmermann L, Choi W-Y. Parametric characterization of self-heating in depletion-type si micro-ring modulators. IEEE J Sel Top Quantum Electron. 2016; 22:116–22.
    [60] Shin M, Ban Y, Yu B-M, Kim M-H, Rhim J, Member S, Zimmermann L, Choi W-Y. A linear equivalent circuit model for depletion-type silicon microring modulators. IEEE Trans Electron Devices. 2017; 64:1140–5.
    [61] Wang B, Huang Z, Zeng X, Sorin WV, Liang D, Fiorentino M, Beausoleil RG. A compact model for si-ge avalanche photodiodes over a wide range of multiplication gain. J Lightwave Technol. 2019; 37:3229–35. https://doi.org/10.1109/JLT.2019.2913179.
    [62] Ahmed SZ, Ganguly S, Yuan Y, Zheng J, Tan Y, Campbell JC, Ghosh AW. A physics based multiscale compact model of p-i-n avalanche photodiodes. J Lightwave Technol. 2021; 39:3591–8. https://doi.org/10.1109/JLT.2021.3068265.
    [63] Lee MJ, Kang HS, Choi WY. Equivalent circuit model for si avalanche photodetectors fabricated in standard cmos process. IEEE Electron Device Lett. 2008; 29:1115–7. https://doi.org/10.1109/LED.2008.2000717.
    [64] Dai D, Chen H-W, Bowers JE, Kang Y, Morse M, Paniccia MJ. Equivalent circuit model of a Ge/Si avalanche photodiode. In: 2009 6th IEEE International Conference on Group IV Photonics.2009. p. 13–15. https://doi.org/10.1109/GROUP4.2009.5338304.
    [65] Dai D, Rodwell MJW, Bowers JE, Kang Y, Morse M. Derivation of the small signal response and equivalent circuit model for a separate absorption and multiplication layer avalanche photodetector. IEEE J Sel Top Quant Electron. 2010; 16:1328–36. https://doi.org/10.1109/JSTQE.2009.2038497.
    [66] Izhnin II, Lozovoy KA, Kokhanenko AP, Khomyakova KI, Douhan RMH, Dirko VV, Voitsekhovskii AV, Fitsych OI, Akimenko NY. Single-photon avalanche diode detectors based on group iv materials. Appl Nanosci (Switzerland). 2021. https://doi.org/10.1007/s13204-021-01667-0.
    [67] Tan CH, Clark JC, David JPR, Rees GJ, Plimmer SA, Tozer RC, Herbert DC, Robbins DJ, Leong WY, Newey J. Avalanche noise measurement in thin si p+-i-n+ diodes. Appl Phys Lett. 2000; 76:3926–8. https://doi.org/10.1063/1.126823.
    [68] Saleh MA, Hayat MM, Sotirelis PP, Holmes AL, Campbell JC, Saleh BEA, Teich MC. Impact-ionization and noise characteristics of thin iii-v avalanche photodiodes. IEEE Trans Electron Devices. 2001; 48:2722–31. https://doi.org/10.1109/16.974696.
    [69] Hayat MM, Sargeant WL, Saleh BEA. Effect of dead space on gain and noise in si and gaas avalanche photodiodes. IEEE J Quantum Electron. 1992; 28:1360–5. https://doi.org/10.1109/3.135278.
    [70] Rees GJ, David JPR. Nonlocal impact ionization and avalanche multiplication. J Phys D Appl Phys. 2010;43. https://doi.org/10.1088/0022-3727/43/24/243001.
    [71] Hayat MM, Kwon OH, Wang S, Campbell JC, Saleh BEA, Teich MC. Boundary effects on multiplication noise in thin heterostructure avalanche photodiodes: Theory and experiment. IEEE Trans Electron Devices. 2002; 49:2114–23. https://doi.org/10.1109/TED.2002.805573.
    [72] Kang Y, Liu HD, Morse M, Paniccia MJ, Zadka M, Litski S, Sarid G, Pauchard A, Kuo YH, Chen HW, Zaoui WS, Bowers JE, Beling A, McIntosh DC, Zheng X, Campbell JC. Monolithic germanium/silicon avalanche photodiodes with 340ghz gain-bandwidth product. Nat Photonics. 2009; 3:59–63. https://doi.org/10.1038/nphoton.2008.247.
    [73] Zaoui WS, Chen H-W, Bowers JE, Kang Y, Morse M, Paniccia MJ, Pauchard A, Campbell JC. Frequency response and bandwidth enhancement in ge/si avalanche photodiodes with over 840ghz gain-bandwidth-product. Opt Express. 2009; 17:12641. https://doi.org/10.1364/oe.17.012641.
    [74] Assefa S, Xia F, Vlasov YA. Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects. Nature. 2010; 464:80–4. https://doi.org/10.1038/nature08813.
    [75] Joo J, Kim S, Kim IG, Jang KS, Kim G. High-sensitivity 10gbps ge photoreceiver operating at λ 1.55 μm. Opt Express. 2010; 18:16474–9. https://doi.org/10.1109/ECOC.2010.5621182.
    [76] Ono H, Fujikata J, Noguchi M, Takahashi H, Shimura D, Yaegashi H, Sasaki H. Si photonics butt-coupled waveguide germanium avalanche photodiodes with lateral sam structures. 2019 Opt Fiber Commun Conf Exposition (OFC). 2019; Th2A.9:1–3.
    [77] Sugeta T, Urisu T, Sakata S, Mizushima Y. Metal-semiconductor-metal photodetector for high-speed optoelectronic circuits. Jpn J Appl Phys. 1980; 19:459–64. https://doi.org/10.7567/JJAPS.19S1.459.
    [78] Soole JBD, Schumacher H. Ingaas metal-semiconductor-metal photodetectors for long wavelength optical communications. IEEE J Quant Electron. 1991; 27:737–52. https://doi.org/10.1109/3.81384.
    [79] Zhang J, Kuo BP-P, Radic S. 64gb/s pam4 and 160gb/s 16qam modulation reception using a low-voltage si-ge waveguide-integrated apd. Opt Express. 2020; 28:23266. https://doi.org/10.1364/oe.396979.
    [80] Benedikovic D, Virot L, Aubin G, Hartmann J-M, Amar F, Roux XL, Alonso-Ramos C, Cassan E, Marris-Morini D, Crozat P, Boeuf F, Fédéli J-M, Kopp C, Szelag B, Vivien L. 40 gbps heterostructure germanium avalanche photo receiver on a silicon chip. Optica. 2020; 7:775. https://doi.org/10.1364/optica.393537.
    [81] Ando H, Kanbe H, Kimura T, Yamaoka T, Kaneda T. Characteristics of germanium avalanche photodiodes in the wavelength region of 1–1.6 μm. IEEE J Quantum Electron. 1978; 14:804–9. https://doi.org/10.1109/JQE.1978.1069698.
    [82] Robbins VM, Wang T, Brennan KF, Hess K, Stillman GE. Electron and hole impact ionization coefficients in (100) and in (111) si. J Appl Phys. 1985; 58:4614–7. https://doi.org/10.1063/1.336229.
    [83] Yeom K, Hinckley JM, Singh J. Calculation of electron and hole impact ionization coefficients in sige alloys. J Appl Phys. 1996; 80:6773–82. https://doi.org/10.1063/1.363746.
    [84] Lee J, Gutierrez-aitken AL, Li SH, Bhattacharya PK. Responsivity and impact ionization coefficients of si1−xgex photodiodes. IEEE Trans Electron Devices. 1996; 43:977–81.
    [85] Yuan Y, Huang Z, Wang B, Sorin WV, Zeng X, Liang D, Fiorentino M, Campbell JC, Beausoleil RG. 64 gbps pam4 si-ge waveguide avalanche photodiodes with excellent temperature stability. J Lightwave Technol. 2020; 38:4857–66. https://doi.org/10.1109/JLT.2020.2996561.
    [86] Duan N, Liow T-Y, Lim AE-J, Ding L, Lo GQ. 310 ghz gain-bandwidth product ge/si avalanche photodetector for 1550 nm light detection. Opt Express. 2012; 20:11031. https://doi.org/10.1364/oe.20.011031.
    [87] Huang M, Cai P, Li S, Wang L, Su TI, Zhao L, Chen W, Hong CY, Pan D. Breakthrough of 25gb/s germanium on silicon avalanche photodiode. 2016 Opt Fiber Commun Conf Exhibition (OFC). 2016; M3A.3:1–3. https://doi.org/10.1364/ofc.2016.tu2d.2.
    [88] Kim G, Kim S, Kim SA, Oh JH, Jang K-S. Ndr-effect vertical-illumination-type ge-on-si avalanche photodetector. Opt Lett. 2018; 43:5583–6.
    [89] Park S, Malinge Y, Dosunmu O, Lovell G, Slavin S, Magruder K, Kang Y, Liu A. 50-gbps receiver subsystem using ge/si avalanche photodiode and integrated bypass capacitor. 2019 Opt Fiber Commun Conf Exhibition (OFC). 2019; M3A.3:1–3.
    [90] Dai D, Chen H-W, Bowers JE, Kang Y, Morse M, Paniccia MJ. Resonant normal-incidence separate-absorption-charge-multiplication ge/si avalanche photodiodes. Opt Express. 2009; 17:16549–57.
    [91] Bowers JE, Dai D, Zaoui WS, Kang Y, Morse M. Resonant si/ge avalanche photodiode with an ultrahigh gain bandwidth product. 2010 IEEE Photon Soc Winter Topicals Meet Ser (WTM). 2010; WC2.2:111–2.
    [92] Duan N, Liow TY, Lim AEJ, Ding L, Lo GQ. High speed waveguide-integrated ge/si avalanche photodetector. 2013 Optical Fiber Commun Conf Exposition (OFC). 2013; OM3K.3:1–3. https://doi.org/10.1364/ofc.2013.om3k.3.
    [93] Liow TY, Duan N, Lim AEJ, Tu X, Yu M, Lo GQ. Waveguide ge/si avalanche photodetector with a unique low-height-profile device structure. 2014 Opt Fiber Commun Conf Exhibition (OFC). 2014; M2G.6:1–3. https://doi.org/10.1364/ofc.2014.m2g.6.
    [94] Huang Z, Li C, Liang D, Yu K, Santori C, Fiorentino M, Sorin W, Palermo S, Beausoleil RG. 25 gbps low-voltage waveguide si–ge avalanche photodiode. Optica. 2016; 3:793. https://doi.org/10.1364/optica.3.000793.
    [95] Huang M, Cai P, Li S, Hou G, Zhang N, Su TI, Hong CY, Pan D. 56ghz waveguide ge/si avalanche photodiode. 2018 Opt Fiber Commun Conf Exposition (OFC). 2018; W4D.6:1–3.
    [96] Samani A, Carpentier O, El-Fiky E, Jacques M, Kumar A, Wang Y, Guenin L, Gamache C, Koh PC, Plant DV. Highly sensitive, 112 gb/s o-band waveguide coupled silicon-germanium avalanche photodetectors. 2019 Opt Fiber Commun Conf Exhibition (OFC). 2019; Th3B.1:1–3.
    [97] Carpentier O, Samani A, Jacques M, El-Fiky E, Alam MS, Wang Y, Koh PC, Calvo NA, Plant D. High gain-bandwidth waveguide coupled silicon germanium avalanche photodiode. 2020 Conf Lasers Electro-Optics (CLEO). 2020; STh4O.3:1–2. https://doi.org/10.1364/CLEO\_SI.2020.STh4O.3.
    [98] Anthony R, Hagan DE, Genuth-Okon D, Maestro LM, Crowe IF, Halsall MP, Knights AP. Extended wavelength responsivity of a germanium photodetector integrated with a silicon waveguide exploiting the indirect transition. IEEE J Sel Top Quantum Electron. 2020; 26:1–7. https://doi.org/10.1109/JSTQE.2019.2938057.
    [99] Huang M, Magruder K, Malinge Y, Fakhimi P, Liao H-H, Kohen D, Lovell G, Qian W, Lee K, Brandt C, Hakami M, Chen Y-J, Carabajal E, Guillermo E, Slavin S, Liu A. Recess-type waveguide integrated germanium on silicon avalanche photodiode; recess-type waveguide integrated germanium on silicon avalanche photodiode. 2021 Opt Fiber Commun Conf Exposition (OFC). 2021; F2C.3:1–3.
    [100] Wang B, Huang Z, Yuan Y, Liang D, Zeng X, Fiorentino M, Beausoleil RG. 64 gb/s low-voltage waveguide sige avalanche photodiodes with distributed bragg reflectors. Photon Res. 2020; 8:1118. https://doi.org/10.1364/prj.390339.
    [101] Yuan Y, Huang Z, Zeng X, Liang D, Sorin WV, Fiorentino M, Beausoleil RG. High responsivity si-ge waveguide avalanche photodiodes enhanced by loop reflector. IEEE J Sel Top Quantum Electron. 2022; 28:1–8. https://doi.org/10.1109/JSTQE.2021.3087416.
    [102] Wei J, Xu P, Wu H. -P., Lee FC, Yao K, Ye M. Comparison of three topology candidates for 12 V VRM. In: APEC 2001. Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.01CH37181).2001. p. 245–51. https://doi.org/10.1109/APEC.2001.911655.
    [103] Briere MA. Advanced power devices for many-core processor power supplies. Tech Dig Int Electron Devices Meet IEDM. 2010;328–31. https://doi.org/10.1109/IEDM.2010.5703357.
    [104] Ware M, Rajamani K, Floyd M, Brock B, Rubio JC, Rawson F, Carter JB. Architecting for power management: The IBM POWER7 approach. In: HPCA - 16 2010 The Sixteenth International Symposium on High-Performance Computer Architecture.2010. p. 1–11. https://doi.org/10.1109/HPCA.2010.5416627.
    [105] Zeng X, Huang Z, Wang B, Liang D, Fiorentino M, Beausoleil RG. Silicon–germanium avalanche photodiodes with direct control of electric field in charge multiplication region. Optica. 2019; 6:772. https://doi.org/10.1364/optica.6.000772.
    [106] Jamil E, Hayat MM, Davids PS, Camacho RM. 3d avalanche multiplication in si-ge lateral avalanche photodiodes. Adv Photon Counting Tech X. 2016; 9858:98580. https://doi.org/10.1117/12.2225037.
    [107] Martinez NJD, Derose CT, Brock RW, Starbuck AL, Pomerene AT, Lentine AL, Trotter DC, Davids PS. High performance waveguide-coupled ge-on-si linear mode avalanche photodiodes. Opt Express. 2016; 24:19072. https://doi.org/10.1364/oe.24.019072.
    [108] Srinivasan SA, Berciano M, Heyn PD, Lardenois S, Pantouvaki M, Campenhout JV. 27 ghz silicon-contacted waveguide-coupled ge/si avalanche photodiode. J Lightwave Technol. 2020; 38:3044–50. https://doi.org/10.1109/JLT.2020.2986923.
    [109] Srinivasan SA, Lambrecht J, Guermandi D, Lardenois S, Berciano M, Absil P, Bauwelinck J, Yin X, Pantouvaki M, Campenhout JV. 56 gb/s nrz o-band hybrid bicmos-silicon photonics receiver using ge/si avalanche photodiode. J Lightwave Technol. 2021; 39:1409–15. https://doi.org/10.1109/JLT.2020.3038361.
    [110] Decker DR, Dunn CN. Determination of germanium ionization coefficients from small-signal impatt diode characteristics. IEEE Trans Electron Devices. 1970; ED-17:290–9.
    [111] Overstraeten RV, Man HD. Measurement of the ionization rates in diffused silicon p-n junctions. Solid State Electron. 1970; 13:583–608.
    [112] Virot L, Crozat P, Fédéli JM, Hartmann JM, Marris-Morini D, Cassan E, Boeuf F, Vivien L. Germanium avalanche receiver for low power interconnects. Nat Commun. 2014; 5:3–8. https://doi.org/10.1038/ncomms5957.
    [113] Chen HT, Verbist J, Verheyen P, Heyn PD, Lepage G, Coster JD, Absil P, Moeneclaey B, Yin X, Bauwelinck J, Campenhout JV, Roelkens G. 25-gb/s 1310-nm optical receiver based on a sub-5-v waveguide-coupled germanium avalanche photodiode. IEEE Photon J. 2015;7. https://doi.org/10.1109/JPHOT.2015.2460116.
    [114] Chen HT, Verbist J, Verheyen P, Heyn PD, Lepage G, Coster JD, Absil P, Yin X, Bauwelinck J, Campenhout JV, Roelkens G. High sensitivity 10gb/s si photonic receiver based on a low-voltage waveguide-coupled ge avalanche photodetector. Opt Express. 2015; 23:815. https://doi.org/10.1364/oe.23.000815.
    [115] Verbist J, Lambrecht J, Moeneclaey B, Campenhout JV, Yin X, Bauwelinck J, Roelkens G. 40-gb/s pam-4 transmission over a 40 km amplifier-less link using a sub-5v ge apd. IEEE Photon Technol Lett. 2017; 29:2238–41. https://doi.org/10.1109/LPT.2017.2757608.
    [116] Benedikovic D, Virot L, Aubin G, Hartmann JM, Amar F, Roux XL, Alonso-Ramos C, Cassan E, Marris-Morini D, Boeuf F, Fedeli JM, Szelag B, Vivien L. Silicon-germanium avalanche receivers with fj/bit energy consumption. IEEE J Sel Top Quantum Electron. 2022; 28:3802508. https://doi.org/10.1109/JSTQE.2021.3112494.
    [117] Lee CA, Batdorf RL, Wiegmann W, Kaminsky G. Time dependence of avalanche processes in silicon. J Appl Phys. 1967; 38:2787–96. https://doi.org/10.1063/1.1710004.
    [118] Naqvi IM. Effects of time dependence of multiplication process on avalanche noise. Solid State Electron. 1973; 16:19–28.
    [119] Hsieh HC, Sargeant W. Avalanche buildup time of an inp/ingaasp/ingaas apd at high gain. IEEE J Quantum Electron. 1989; 25:2027–35.
    [120] Norimatsu S, Maruoka M. Accurate q -factor estimation of optically amplified. IEEE/OSA J Lightwave Technol. 2002; 20:19–27.
    [121] Downie JD. Relationship of q penalty to eye-closure penalty for nrz and rz signals with signal-dependent noise. IEEE/OSA J Lightwave Technol. 2005; 23:2031–8. https://doi.org/10.1109/JLT.2005.849899.
    [122] Sackinger E. On the noise optimum of fet broadband transimpedance amplifiers. IEEE Trans Circ Syst I. 2012; 59:2881–9. https://doi.org/10.1109/TCSI.2012.2206452.
  • 加载中
计量
  • 文章访问数:  66
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-31
  • 录用日期:  2022-03-09
  • 网络出版日期:  2022-03-25

目录

    /

    返回文章
    返回