[1] |
Siegel PH. Terahertz technology. IEEE Trans Microw Theory Tech. 2002;50(3):910–28.
|
[2] |
Dragoman D, Dragoman M. Terahertz fields and applications. Prog Quantum Electron. 2004;28(1):1–66.
|
[3] |
Tonouchi M. Cutting-edge terahertz technology. Nat Photonics. 2007;1(2):97–105.
|
[4] |
Pickwell E, Wallace VP. Biomedical applications of terahertz technology. J Phys D Appl Phys. 2006;39(17):R301.
|
[5] |
Fan S, He Y, Ung BS, et al. The growth of biomedical terahertz research. J Phys D Appl Phys. 2014;47(37):374009.
|
[6] |
Beard MC, Turner GM, Schmuttenmaer CA. Terahertz spectroscopy. J Phys Chem B. 2002;106(29):7146–59.
|
[7] |
Jepsen PU, Cooke DG, Koch M. Terahertz spectroscopy and imaging–modern techniques and applications. Laser Photon Rev. 2011;5(1):124–66.
|
[8] |
Debus C, Bolivar PH. Frequency selective surfaces for high sensitivity terahertz sensing. Appl Phys Lett. 2007;91(18):184102.
|
[9] |
Beruete M, Jáuregui-López I. Terahertz sensing based on metasurfaces. Adv Opt Mater. 2020;8(3):1900721.
|
[10] |
Mittleman DM. Twenty years of terahertz imaging. Opt Express. 2018;26(8):9417–31.
|
[11] |
Tzydynzhapov G, Gusikhin P, Muravev V, et al. New real-time sub-terahertz security body scanner. J Infrared Millim Terahertz Waves. 2020;41(6):632–41.
|
[12] |
Nagatsuma T, Ducournau G, Renaud CC. Advances in terahertz communications accelerated by photonics. Nat Photonics. 2016;10(6):371–9.
|
[13] |
Yang Y, Yamagami Y, Yu X, et al. Terahertz topological photonics for on-chip communication. Nat Photonics. 2020;14(7):446–51.
|
[14] |
Sengupta K, Nagatsuma T, Mittleman DM. Terahertz integrated electronic and hybrid electronic–photonic systems. Nat Electron. 2018;1(12):622–35.
|
[15] |
Degl’Innocenti R, Kindness SJ, Beere HE, et al. All-integrated terahertz modulators. Nanophotonics. 2018;7(1):127–44.
|
[16] |
Cong L, Han J, Zhang W, et al. Temporal loss boundary engineered photonic cavity. Nat Commun. 2021;12(1):1–8.
|
[17] |
Yu N, Genevet P, Kats MA, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science. 2011;334(6054):333–7.
|
[18] |
Huang L, Chen X, Muhlenbernd H, et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett. 2012;12(11):5750–5.
|
[19] |
Zhang X, Tian Z, Yue W, et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities. Adv Mater. 2013;25(33):4567–72.
|
[20] |
Liu L, Zhang X, Kenney M, et al. Broadband metasurfaces with simultaneous control of phase and amplitude. Adv Mater. 2014;26(29):5031–6.
|
[21] |
Papakostas A, Potts A, Bagnall DM, et al. Optical manifestations of planar chirality. Phys Rev Lett. 2003;90(10):107404.
|
[22] |
Grady NK, Heyes JE, Chowdhury DR, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science. 2013;340(6138):1304–7.
|
[23] |
Wang Q, Plum E, Yang Q, et al. Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves. Light Sci Appl. 2018;7(1):1–9.
|
[24] |
Ye W, Zeuner F, Li X, et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nat Commun. 2016;7(1):1–7.
|
[25] |
Huang L, Zhang S, Zentgraf T. Metasurface holography: from fundamentals to applications. Nanophotonics. 2018;7(6):1169–90.
|
[26] |
Ma Q, et al. Smart metasurface with self-adaptively reprogrammable functions. Light Sci Appl. 2019;8(1):98.
|
[27] |
Ma Q, Cui TJ. Information metamaterials: bridging the physical world and digital world. PhotoniX. 2020;1(1):1–32.
|
[28] |
Chen X, Huang L, Mühlenbernd H, et al. Dual-polarity plasmonic metalens for visible light. Nat Commun. 2012;3(1):1–6.
|
[29] |
Wang Q, Zhang X, Xu Y, et al. A broadband metasurface-based terahertz flat-lens array. Adv Opt Mater. 2015;3(6):779–85.
|
[30] |
Xu Y, Li Q, Zhang X, et al. Spin-decoupled multifunctional metasurface for asymmetric polarization generation. ACS Photonics. 2019;6(11):2933–41.
|
[31] |
Cong L, Srivastava YK, Zhang H, et al. All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting. Light Sci Appl. 2018;7:28.
|
[32] |
Xu Y, Zhang H, Li Q, et al. Generation of terahertz vector beams using dielectric metasurfaces via spin-decoupled phase control. Nanophotonics. 2020;9(10):3393–402.
|
[33] |
Ni X, Kildishev AV, Shalaev VM. Metasurface holograms for visible light. Nat Commun. 2013;4(1):1–6.
|
[34] |
Zhang X, Xu Y, Yue W, et al. Anomalous surface wave launching by handedness phase control. Adv Mater. 2015;27(44):7123–9.
|
[35] |
Xu Q, Zhang X, Wei M, et al. Efficient metacoupler for complex surface plasmon launching. Adv Opt Mater. 2018;6(5):1701117.
|
[36] |
Wang L, Lin XW, Hu W, et al. Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes. Light Sci Appl. 2015;4(2):e253.
|
[37] |
Shrekenhamer D, Chen WC, Padilla WJ. Liquid crystal tunable metamaterial absorber. Phys Rev Lett. 2013;110(17):177403.
|
[38] |
Chen HT, Padilla WJ, Zide JMO, et al. Active terahertz metamaterial devices. Nature. 2006;444(7119):597–600.
|
[39] |
Zhou J, Chowdhury DR, Zhao R, et al. Terahertz chiral metamaterials with giant and dynamically tunable optical activity. Phys Rev B. 2012;86(3):035448.
|
[40] |
Pitchappa P, Manjappa M, Ho CP, et al. Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial. Adv Opt Mater. 2016;4(4):541–7.
|
[41] |
Cong L, Pitchappa P, Lee C, et al. Active phase transition via loss engineering in a terahertz MEMS metamaterial. Adv Mater. 2017;29(26):1700733.
|
[42] |
Manjappa M, Pitchappa P, Wang N, et al. Active control of resonant cloaking in a terahertz MEMS metamaterial. Adv Opt Mater. 2018;6(16):1800141.
|
[43] |
Cong L, Pitchappa P, Wu Y, et al. Active multifunctional microelectromechanical system metadevices: applications in polarization control, wavefront deflection, and holograms. Adv Opt Mater. 2017;5(2):1600716.
|
[44] |
Lee SH, Choi M, Kim TT, et al. Switching terahertz waves with gate-controlled active graphene metamaterials. Nature Mater. 2012;11(11):936–41.
|
[45] |
Li Q, Tian Z, Zhang X, et al. Active graphene–silicon hybrid diode for terahertz waves. Nat Commun. 2015;6(1):1–6.
|
[46] |
Liu M, Plum E, Li H, et al. Switchable chiral mirrors. Adv. Opt Mater. 2020;8:15.
|
[47] |
Pitchappa P, Kumar A, Prakash S, et al. Chalcogenide phase change material for active terahertz photonics. Adv Mater. 2019;31(12):1808157.
|
[48] |
Makino K, Kato K, Saito Y, et al. Terahertz spectroscopic characterization of Ge2Sb2Te5 phase change materials for photonics applications. J Mater Chem C Mater. 2019;7(27):8209–15.
|
[49] |
Pitchappa P, Kumar A, Prakash S, et al. Volatile ultrafast switching at multilevel nonvolatile states of phase change material for active flexible terahertz metadevices. Adv Funct Mater. 2021;31(17):2100200.
|
[50] |
Cong L, Singh R. Spatiotemporal dielectric metasurfaces for unidirectional propagation and reconfigurable steering of terahertz beams. Adv Mater. 2020;32(28):2001418.
|
[51] |
Dong W, Qiu Y, Zhou X, et al. Tunable mid-infrared phase-change metasurface. Adv Opt Mater. 2018;6(14):1701346.
|
[52] |
Cao T, Zhang X, Dong W, et al. Tuneable thermal emission using chalcogenide metasurface. Adv Opt Mater. 2018;6(16):1800169.
|
[53] |
Ríos C, Stegmaier M, Hosseini P, et al. Integrated all-photonic non-volatile multi-level memory. Nat Photonics. 2015;9(11):725–32.
|
[54] |
Farmakidis N, Youngblood N, Li X, et al. Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality. Sci Adv. 2019;5(11):eaaw2687.
|
[55] |
Tuma T, Pantazi A, Le Gallo M, et al. Stochastic phase-change neurons. Nat Nanotechnol. 2016;11(8):693–9.
|
[56] |
Feldmann J, Stegmaier M, Gruhler N, et al. Calculating with light using a chip-scale all-optical abacus. Nat Commun. 2017;8(1):1–8.
|
[57] |
Hosseini P, Wright CD, Bhaskaran H. An optoelectronic framework enabled by low-dimensional phase-change films. Nature. 2014;511(7508):206–11.
|
[58] |
de Galarreta CR, Sinev I, Alexeev AM, et al. Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces. Optica. 2020;7(5):476–84.
|
[59] |
Lin QW, Wong H, Huitema L, et al. Coding Metasurfaces with reconfiguration capabilities based on optical activation of phase-change materials for terahertz beam manipulations. Adv Opt Mater. 2021;10(1):2101699.
|
[60] |
Su X, Ouyang C, Xu N, et al. Active metasurface terahertz deflector with phase discontinuities. Opt Express. 2015;23(21):27152–8.
|
[61] |
Bitzer A, Ortner A, Merbold H, et al. Terahertz near-field microscopy of complementary planar metamaterials: Babinet’s principle. Opt Express. 2011;19(3):2537–45.
|