留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Chunlei Sun, Yuexin Yin, Zequn Chen, Yuting Ye, Ye Luo, Hui Ma, Lichun Wang, Maoliang Wei, Jialing Jian, Renjie Tang, Hao Dai, Jianghong Wu, Junying Li, Daming Zhang, Hongtao Lin, Lan Li. Tunable narrow-band single-channel add-drop integrated optical filter with ultrawide FSR[J]. PhotoniX. doi: 10.1186/s43074-022-00056-2
Citation: Chunlei Sun, Yuexin Yin, Zequn Chen, Yuting Ye, Ye Luo, Hui Ma, Lichun Wang, Maoliang Wei, Jialing Jian, Renjie Tang, Hao Dai, Jianghong Wu, Junying Li, Daming Zhang, Hongtao Lin, Lan Li. Tunable narrow-band single-channel add-drop integrated optical filter with ultrawide FSR[J]. PhotoniX. doi: 10.1186/s43074-022-00056-2

doi: 10.1186/s43074-022-00056-2

Tunable narrow-band single-channel add-drop integrated optical filter with ultrawide FSR

Funds: We thank Westlake Center for Micro/Nano Fabrication and Instrumentation, Service Center for Physical Sciences and Molecular Sciences at Westlake University, and ZJU Micro-Nano Fabrication Center at Zhejiang University for the facility support.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Corcoran B, Tan M, Xu X, Boes A, Wu J, Nguyen TG, et al. Ultra-dense optical data transmission over standard fibre with a single chip source. Nat Commun. 2020;11:2568.
    [2] Dai D, Bowers JE. Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects. Nanophotonics. 2014;3:283–311.
    [3] Morichetti F, Milanizadeh M, Petrini M, Zanetto F, Ferrari G, De Aguiar DO, et al. Polarization-transparent silicon photonic add-drop multiplexer with wideband hitless tuneability. Nat Commun. 2021;12:4324.
    [4] Baier M, Grote N, Moehrle M, Sigmund A, Soares FM, Theurer M, et al. Integrated transmitter devices on InP exploiting electro-absorption modulation. PhotoniX. 2020;1:4.
    [5] Feldmann J, Youngblood N, Karpov M, Gehring H, Li X, Stappers M, et al. Parallel convolutional processing using an integrated photonic tensor core. Nature. 2021;589:52–8.
    [6] Feldmann J, Youngblood N, Wright CD, Bhaskaran H, Pernice WHP. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature. 2019;569:208–14.
    [7] Li C, Zhang X, Li J, Fang T, Dong X. The challenges of modern computing and new opportunities for optics. PhotoniX. 2021;2:20.
    [8] Goi E, Zhang Q, Chen X, Luan H, Gu M. Perspective on photonic memristive neuromorphic computing. PhotoniX. 2020;1:3.
    [9] Liu T, Fiore A. Designing open channels in random scattering media for on-chip spectrometers. Optica. 2020;7:934–9.
    [10] Zhang Z, Wang Y, Tsang HK. Tandem Configuration of Microrings and Arrayed Waveguide Gratings for a High-Resolution and Broadband Stationary Optical Spectrometer at 860 nm. ACS Photon. 2021;8:1251–7.
    [11] Xia Z, Eftekhar AA, Soltani M, Momeni B, Li Q, Chamanzar M, et al. High resolution on-chip spectroscopy based on miniaturized microdonut resonators. Opt Express. 2011;19:12356–64.
    [12] Zheng S, Cai H, Song J, Zou J, Liu PY, Lin Z, et al. A Single-Chip Integrated Spectrometer via Tunable Microring Resonator Array. IEEE Photonics J. 2019;11:1–9.
    [13] Wan Y, Zhang S, Norman JC, Kennedy MJ, He W, Liu S, et al. Tunable quantum dot lasers grown directly on silicon. Optica. 2019;6:1394–400.
    [14] Wang R, Sprengel S, Vasiliev A, Boehm G, Van Campenhout J, Lepage G, et al. Widely tunable 2.3  μm III-V-on-silicon Vernier lasers for broadband spectroscopic sensing. Photonics Res. 2018;6:858–66.
    [15] Wan Y, Zhang S, Norman JC, Kennedy MJ, He W, Tong Y et al. Directly Modulated Single-Mode Tunable Quantum Dot Lasers at 1.3 μm. Laser Photonics Rev 2020;14:1900348.
    [16] Liu D, Zhang L, Jiang H, Dai D. First demonstration of an on-chip quadplexer for passive optical network systems. Photonics Res. 2021;9:757–63.
    [17] Yun H, Hammood M, Lin S, Chrostowski L, Na FJ. Broadband flat-top SOI add-drop filters using apodized sub-wavelength grating contradirectional couplers. Opt Lett. 2019;44:4929–32.
    [18] Sun H, Chen LR. Polarization-dependent tuning of Bragg reflection enabled through tilted subwavelength grating waveguide Bragg gratings. Opt Lett. 2021;46:1450–3.
    [19] Cheben P, Ctyroky J, Schmid JH, Wang S, Lapointe J, Wanguemert-Perez JG, et al. Bragg filter bandwidth engineering in subwavelength grating metamaterial waveguides. Opt Lett. 2019;44:1043–6.
    [20] Ren Y, Perron D, Aurangozeb F, Jiang Z, Hossain M, Van V. Silicon Photonic Vernier Cascaded Microring Filter for Broadband Tunability. IEEE Photon Technol Lett. 2019;31:1503–6.
    [21] Boeck R, Jaeger NA, Rouger N, Chrostowski L. Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement. Opt Express. 2010;18:25151–7.
    [22] Boeck R, Flueckiger J, Yun H, Chrostowski L, Jaeger NA. High performance Vernier racetrack resonators. Opt Lett. 2012;37:5199–201.
    [23] Sun C, Zhong C, Wei M, Ma H, Luo Y, Chen Z, et al. Free-spectral-range-free filters with ultrawide tunability across the S + C + L band. Photonics Res. 2021;9:1013–8.
    [24] Cheng Z, Dong J, Zhang X. Ultracompact optical switch using a single semisymmetric Fano nanobeam cavity. Opt Lett. 2020;45:2363–6.
    [25] Huang Q, Liu Q, Xia J. Traveling wave-like Fabry-Perot resonator-based add-drop filters. Opt Lett. 2017;42:5158–61.
    [26] Soref R, De Leonardis F, Passaro VMN. Compact resonant 2 x 2 crossbar switch using three coupled waveguides with a central nanobeam. Opt Express. 2021;29:8751–62.
    [27] Yu P, Qiu H, Dai T, Cheng R, Lian B, Li W, et al. Ultracompact Channel Add-Drop Filter Based on Single Multimode Nanobeam Photonic Crystal Cavity. J Lightwave Technol. 2021;39:162–6.
    [28] Poulton CV, Zeng X, Wade MT, Popovic MA. Channel add-drop filter based on dual photonic crystal cavities in push-pull mode. Opt Lett. 2015;40:4206–9.
    [29] Alonso-Ramos C, Annoni A, Ortega-Moñux A, Molina-Fernández I, Strain M, Orlandi P, et al. Narrow-band single-channel filter in silicon photonics. San Dieg: Advanced Photonics for Communications Optical Society of America; 2014.
    [30] Manolatou C, Khan MJ, Fan S, Villeneuve PR, Haus HA, Joannopoulos JD. Coupling of modes analysis of resonant channel add-drop filters. IEEE J Quantum Electron. 1999;35:1322–31.
    [31] Yariv A. Coupled-mode theory for guided-wave optics. IEEE J Quantum Electron. 1973;9:919–33.
    [32] Koks C, Van Exter MP. Microcavity resonance condition, quality factor, and mode volume are determined by different penetration depths. Opt Express. 2021;29:6879–89.
    [33] Zheng SN, Zou J, Cai H, Song JF, Chin LK, Liu PY, et al. Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution. Nat Commun. 2019;10:2349.
    [34] Ma Y, Zhao Y, Shi Y, Hao L, Sun Z, Hong Z, et al. Silicon Add-Drop Multiplexer Based on π Phase-Shifted Antisymmetric Bragg Grating. IEEE J Quantum Electron. 2021;57:1–8.
    [35] Xing J, Li Z, Yu Y, Yu J. Design of polarization-independent adiabatic splitters fabricated on silicon-on-insulator substrates. Opt Express. 2013;21:26729–34.
    [36] Yun H, Shi W, Wang Y, Chrostowski L, NaF J. 2×2 adiabatic 3-dB coupler on silicon-on-insulator rib waveguides. Photonics North. The International Society for. Opt Eng. 2013.
  • 加载中
计量
  • 文章访问数:  53
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-21
  • 录用日期:  2022-04-02
  • 网络出版日期:  2022-04-29

目录

    /

    返回文章
    返回