[1] |
Corcoran B, Tan M, Xu X, Boes A, Wu J, Nguyen TG, et al. Ultra-dense optical data transmission over standard fibre with a single chip source. Nat Commun. 2020;11:2568.
|
[2] |
Dai D, Bowers JE. Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects. Nanophotonics. 2014;3:283–311.
|
[3] |
Morichetti F, Milanizadeh M, Petrini M, Zanetto F, Ferrari G, De Aguiar DO, et al. Polarization-transparent silicon photonic add-drop multiplexer with wideband hitless tuneability. Nat Commun. 2021;12:4324.
|
[4] |
Baier M, Grote N, Moehrle M, Sigmund A, Soares FM, Theurer M, et al. Integrated transmitter devices on InP exploiting electro-absorption modulation. PhotoniX. 2020;1:4.
|
[5] |
Feldmann J, Youngblood N, Karpov M, Gehring H, Li X, Stappers M, et al. Parallel convolutional processing using an integrated photonic tensor core. Nature. 2021;589:52–8.
|
[6] |
Feldmann J, Youngblood N, Wright CD, Bhaskaran H, Pernice WHP. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature. 2019;569:208–14.
|
[7] |
Li C, Zhang X, Li J, Fang T, Dong X. The challenges of modern computing and new opportunities for optics. PhotoniX. 2021;2:20.
|
[8] |
Goi E, Zhang Q, Chen X, Luan H, Gu M. Perspective on photonic memristive neuromorphic computing. PhotoniX. 2020;1:3.
|
[9] |
Liu T, Fiore A. Designing open channels in random scattering media for on-chip spectrometers. Optica. 2020;7:934–9.
|
[10] |
Zhang Z, Wang Y, Tsang HK. Tandem Configuration of Microrings and Arrayed Waveguide Gratings for a High-Resolution and Broadband Stationary Optical Spectrometer at 860 nm. ACS Photon. 2021;8:1251–7.
|
[11] |
Xia Z, Eftekhar AA, Soltani M, Momeni B, Li Q, Chamanzar M, et al. High resolution on-chip spectroscopy based on miniaturized microdonut resonators. Opt Express. 2011;19:12356–64.
|
[12] |
Zheng S, Cai H, Song J, Zou J, Liu PY, Lin Z, et al. A Single-Chip Integrated Spectrometer via Tunable Microring Resonator Array. IEEE Photonics J. 2019;11:1–9.
|
[13] |
Wan Y, Zhang S, Norman JC, Kennedy MJ, He W, Liu S, et al. Tunable quantum dot lasers grown directly on silicon. Optica. 2019;6:1394–400.
|
[14] |
Wang R, Sprengel S, Vasiliev A, Boehm G, Van Campenhout J, Lepage G, et al. Widely tunable 2.3 μm III-V-on-silicon Vernier lasers for broadband spectroscopic sensing. Photonics Res. 2018;6:858–66.
|
[15] |
Wan Y, Zhang S, Norman JC, Kennedy MJ, He W, Tong Y et al. Directly Modulated Single-Mode Tunable Quantum Dot Lasers at 1.3 μm. Laser Photonics Rev 2020;14:1900348.
|
[16] |
Liu D, Zhang L, Jiang H, Dai D. First demonstration of an on-chip quadplexer for passive optical network systems. Photonics Res. 2021;9:757–63.
|
[17] |
Yun H, Hammood M, Lin S, Chrostowski L, Na FJ. Broadband flat-top SOI add-drop filters using apodized sub-wavelength grating contradirectional couplers. Opt Lett. 2019;44:4929–32.
|
[18] |
Sun H, Chen LR. Polarization-dependent tuning of Bragg reflection enabled through tilted subwavelength grating waveguide Bragg gratings. Opt Lett. 2021;46:1450–3.
|
[19] |
Cheben P, Ctyroky J, Schmid JH, Wang S, Lapointe J, Wanguemert-Perez JG, et al. Bragg filter bandwidth engineering in subwavelength grating metamaterial waveguides. Opt Lett. 2019;44:1043–6.
|
[20] |
Ren Y, Perron D, Aurangozeb F, Jiang Z, Hossain M, Van V. Silicon Photonic Vernier Cascaded Microring Filter for Broadband Tunability. IEEE Photon Technol Lett. 2019;31:1503–6.
|
[21] |
Boeck R, Jaeger NA, Rouger N, Chrostowski L. Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement. Opt Express. 2010;18:25151–7.
|
[22] |
Boeck R, Flueckiger J, Yun H, Chrostowski L, Jaeger NA. High performance Vernier racetrack resonators. Opt Lett. 2012;37:5199–201.
|
[23] |
Sun C, Zhong C, Wei M, Ma H, Luo Y, Chen Z, et al. Free-spectral-range-free filters with ultrawide tunability across the S + C + L band. Photonics Res. 2021;9:1013–8.
|
[24] |
Cheng Z, Dong J, Zhang X. Ultracompact optical switch using a single semisymmetric Fano nanobeam cavity. Opt Lett. 2020;45:2363–6.
|
[25] |
Huang Q, Liu Q, Xia J. Traveling wave-like Fabry-Perot resonator-based add-drop filters. Opt Lett. 2017;42:5158–61.
|
[26] |
Soref R, De Leonardis F, Passaro VMN. Compact resonant 2 x 2 crossbar switch using three coupled waveguides with a central nanobeam. Opt Express. 2021;29:8751–62.
|
[27] |
Yu P, Qiu H, Dai T, Cheng R, Lian B, Li W, et al. Ultracompact Channel Add-Drop Filter Based on Single Multimode Nanobeam Photonic Crystal Cavity. J Lightwave Technol. 2021;39:162–6.
|
[28] |
Poulton CV, Zeng X, Wade MT, Popovic MA. Channel add-drop filter based on dual photonic crystal cavities in push-pull mode. Opt Lett. 2015;40:4206–9.
|
[29] |
Alonso-Ramos C, Annoni A, Ortega-Moñux A, Molina-Fernández I, Strain M, Orlandi P, et al. Narrow-band single-channel filter in silicon photonics. San Dieg: Advanced Photonics for Communications Optical Society of America; 2014.
|
[30] |
Manolatou C, Khan MJ, Fan S, Villeneuve PR, Haus HA, Joannopoulos JD. Coupling of modes analysis of resonant channel add-drop filters. IEEE J Quantum Electron. 1999;35:1322–31.
|
[31] |
Yariv A. Coupled-mode theory for guided-wave optics. IEEE J Quantum Electron. 1973;9:919–33.
|
[32] |
Koks C, Van Exter MP. Microcavity resonance condition, quality factor, and mode volume are determined by different penetration depths. Opt Express. 2021;29:6879–89.
|
[33] |
Zheng SN, Zou J, Cai H, Song JF, Chin LK, Liu PY, et al. Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution. Nat Commun. 2019;10:2349.
|
[34] |
Ma Y, Zhao Y, Shi Y, Hao L, Sun Z, Hong Z, et al. Silicon Add-Drop Multiplexer Based on π Phase-Shifted Antisymmetric Bragg Grating. IEEE J Quantum Electron. 2021;57:1–8.
|
[35] |
Xing J, Li Z, Yu Y, Yu J. Design of polarization-independent adiabatic splitters fabricated on silicon-on-insulator substrates. Opt Express. 2013;21:26729–34.
|
[36] |
Yun H, Shi W, Wang Y, Chrostowski L, NaF J. 2×2 adiabatic 3-dB coupler on silicon-on-insulator rib waveguides. Photonics North. The International Society for. Opt Eng. 2013.
|