[1] |
Considine V. CORDIC trigonometric function generator for DSP. In: International Conference on Acoustics, Speech, and Signal Processing. 1989;4:2381–4.
|
[2] |
Tian-li L, Tao Y, Xing W, Hai-gang Y. An efficient single-precision floating-point trigonometric function calculation circuit structure and implementation. Microelectronics & Computer. 2018;35:33–7.
|
[3] |
Ma S, Wang Z. Rapid computation of trigonometric function on DSP. Comput Eng. 2005;31:12–4.
|
[4] |
Price DDS. A history of calculating machines. IEEE Micro. 1984;4:22–52.
|
[5] |
Clymer AB. The mechanical analog computers of Hannibal Ford and William Newell. IEEE Annals Hist Comput. 1993;15:19–34.
|
[6] |
Wu J, Lin X, Guo Y, Liu J, Fang L, Jiao S, et al. Analog Optical Computing for Artificial Intelligence. Engineering. 2021;10:133-45.
|
[7] |
Zangeneh-Nejad F, Sounas DL, Alù A, Fleury R. Analogue computing with metamaterials. Nat Rev Mater. 2020;6:207–25.
|
[8] |
Slav´ık R, Park Y, Ayotte N, Doucet S, Ahn TJ, LaRochelle S, et al. Photonic temporal integrator for all-optical computing. Opt Express. 2008;16:18202–14.
|
[9] |
Michalska M, Swiderski J, Mamajek M. Arbitrary pulse shaping in erdoped fiber amplifierspossibilities and limitations. Opt Laser Technol. 2014;60:8–13.
|
[10] |
Ashrafi R, Dizaji MR, Cortés LR, Zhang J, Yao J, Azaña J, et al. Time-delay to intensity mapping based on a second-order optical integrator: application to optical arbitrary waveform generation. Opt Express. 2015;23:16209–23.
|
[11] |
Pérez D, Gasulla I, Crudgington L, Thomson DJ, Khokhar AZ, Ke L, et al. Multipurpose silicon photonics signal processor core. Nat Commun. 2017;8:636.
|
[12] |
Boolakee T, Heide C, Garzón-Ramírez A, Weber HB, Franco I, Hommelhoff P. Light-field control of real and virtual charge carriers. Nature. 2022;605:251–5.
|
[13] |
Zhao W, Liu S, Qi H, Peng G, Shen M. Sampled fiber grating for wdm signal queuing with picosecond time interval. Opt Laser Technol. 2017;97:302–7.
|
[14] |
Ding X, Wang Z, Hu Z, Liu J, Zhang K, Li H, et al. Metasurface holographic image projection based on mathematical properties of Fourier transform. PhotoniX. 2020;1:1–12.
|
[15] |
Lee D, So S, Hu G, Kim M, Badloe T, Cho H, et al. Hyperbolic metamaterials: fusing artificial structures to natural 2D materials. eLight. 2022;2:1–23.
|
[16] |
Wang Z, Hu G, Wang X, Ding X, Zhang K, Li H, et al. Single-layer spatial analog meta-processor for imaging processing. Nat Commun. 2022;13:2188.
|
[17] |
Zhao Z, Ding X, Zhang K, Fu J, Burokur SN, Wu Q. Generation and deflection control of a 2D Airy beam utilizing metasurfaces. Opt Lett. 2021;46:5220–3.
|
[18] |
Hossein B, Zahra K, Somayyeh K, Amin K. Integration in analog optical computing using metasurfaces revisited: toward ideal optical integration. J Opt Soc Am B. 2017;34:1270–9.
|
[19] |
Zhu T, Zhou Y, Lou Y, Ye H, Qiu M, Ruan Z, et al. Plasmonic computing of spatial differentiation. Nat Commun. 2017;8:1–6.
|
[20] |
Zuo SY, Tian Y, Wei Q, Cheng Y, Liu X. Acoustic analog computing based on a reflective metasurface with decoupled modulation of phase and amplitude. J Appl Phys. 2018;123:091704.
|
[21] |
Fu W, Zhao D, Li Z, Liu S, Tian C, Huang K. Ultracompact meta-imagers for arbitrary all-optical convolution. Light Sci Appl. 2022;11:1–13.
|
[22] |
Kwon H, Sounas D, Cordaro A, Polman A, Alù A. Nonlocal metasurfaces for optical signal processing. Phys Rev Lett. 2018;121: 173004.
|
[23] |
Huo P, Zhang C, Zhu W, Liu M, Zhang S, Zhang S, Xu T. Photonic spin-multiplex-ing metasurface for switchable spiral phase contrast imaging. Nano Lett. 2020;20:2791–8.
|
[24] |
Wang Z, Chang L, Wang F, Li T, Gu T. Integrated photonic metasystem for image classifications at telecommunication wavelength. Nat Commun. 2022;13:1–8.
|
[25] |
Cordaro A, Edwards B, Nikkhah V, Alù A, Engheta N, Polman A. Solving integral equations in free-space with inverse-designed ultrathin optical metagratings. 2022. arXiv preprint arXiv:2202.05219.
|
[26] |
Zhang W, Qu C, Zhang X. Solving constant-coefficient differential equations with dielectric metamaterials. J Opt. 2016;18: 075102.
|
[27] |
Zhao Z, Wang Y, Ding X, Li H, Fu J, Zhang K, et al. Compact logic operator utilizing a single-layer metasurface. Photon Res. 2022;10:316–22.
|
[28] |
Qian C, Lin X, Lin X, Xu J, Sun Y, Li E, Chen H. Performing optical logic operations by a diffractive neural network. Light Sci Appl. 2020;9:1–7.
|
[29] |
Lin W, Chen L, Chen Y, Cai W, Hu Y, Wen K. Single-shot speckle reduction by eliminating redundant speckle pattern in digital holography. Appl Opt. 2020;59:5066–72.
|
[30] |
Luo Y, Zhao Y, Li J, Çetintaş E, Rivenson Y, Jarrahi M, Ozcan A. Computational imaging without a computer: seeing through random diffusers at the speed of light. eLight. 2022;2:1–16.
|
[31] |
Qian C, Zheng B, Shen Y, Jing L, Li E, Shen L, Chen H. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat Photonics. 2020;14:383–90.
|
[32] |
Lin X, Rivenson Y, Yardimci NT, Veli M, Luo Y, Jarrahi M, et al. All-optical machine learning using diffractive deep neural networks. Science. 2018;361:1004–8.
|
[33] |
Lin R, Alnakhli Z, Li X. Engineering of multiple bound states in the continuum by latent representation of freeform structures. Photon Res. 2021;9:B96–103.
|
[34] |
Ren H, Shao W, Li Y, Salim F, Gu M. Three-dimensional vectorial holography based on machine learning inverse design. Sci Adv. 2020;6:eaaz4261.
|
[35] |
Khoram E, Chen A, Liu D, Ying L, Wang Q, Yuan M, et al. Nanophotonic media for artificial neural inference. Photon Res. 2019;7:823–7.
|
[36] |
Wu Z, Zhou M, Khoram E, Liu B, Yu Z. Neuromorphic metasurface. Photon Res. 2020;8:46–50.
|
[37] |
Rahman MSS, Li J, Mengu D, Rivenson Y, Ozcan A. Ensemble learning of diffractive optical networks. Light Sci Appl. 2020;10:1–13.
|
[38] |
Li Z, Cheng H, Liu Z, Chen S, Tian J. Plasmonic airy beam generation by both phase and amplitude modulation with metasurfaces. Adv Opt Mater. 2016;4:1230–5.
|