留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Chao Liu, Zhao Jiang, Xin Wang, Yi Zheng, Yi-Wei Zheng, Qiong-Hua Wang. Continuous optical zoom microscope with extended depth of field and 3D reconstruction[J]. PhotoniX. doi: 10.1186/s43074-022-00066-0
Citation: Chao Liu, Zhao Jiang, Xin Wang, Yi Zheng, Yi-Wei Zheng, Qiong-Hua Wang. Continuous optical zoom microscope with extended depth of field and 3D reconstruction[J]. PhotoniX. doi: 10.1186/s43074-022-00066-0

doi: 10.1186/s43074-022-00066-0

Continuous optical zoom microscope with extended depth of field and 3D reconstruction

Funds: We would like to thank Nanofabrication facility in Beihang Nano for technique consultation.
  • [1] Pasqualini FS, Agarwal A, O’Connor BB, Liu Q, Parker KK. Traction force microscopy of engineered cardiac tissues. PLoS ONE. 2018;13:e0194706.
    [2] Tanaka N, Kanatani S, Tomer R, Sahlgren C, Kronqvist P, Kaczynska D, Louhivuori L, Kis L, Lindh C, Mitura P. Whole-tissue biopsy phenotyping of three-dimensional tumours reveals patterns of cancer heterogeneity. Nat Biomedical Eng. 2017;1:796–806.
    [3] Wassie AT, Zhao Y, Boyden ES. Expansion microscopy: principles and uses in biological research. Nat Methods. 2019;16:33–41.
    [4] Sun HY, Wang SL, Hu XB, Liu HJ, Zhou XY, Huang J, Cheng XL, Sun F, Liu YB, Liu D. Detection of surface defects and subsurface defects of polished optics with multisensor image fusion. PhotoniX. 2022;3:6.
    [5] Kühnemund M, Wei QS, Darai E, Wang YJ, Hernández-Neuta I, Yang Z, Tseng D, Ahlford A, Mathot L, Sjöblom T, Ozcan A, Nilsson M. Targeted DNA sequencing and in situ mutation analysis using mobile phone microscopy. Nat Commun. 2017;8:13913.
    [6] Fan Y, Li J, Lu L, Sun JS, Hu Y, Zhang JL, Li ZS, Shen Q, Wang BW, Zhang RN, Chen Q, Zuo C. Smart computational light microscopes (SCLMs) of smart computational imaging laboratory (SCILab). PhotoniX. 2021;2:19.
    [7] Zhou Z, Huang JF, Li X, Gao XJ, Chen ZY, Jiao ZF, Zhang ZF, Luo QM, Fu L. Adaptive optical microscopy via virtual-imaging-assisted wavefront sensing for high-resolution tissue imaging. PhotoniX. 2022;3:1–20.
    [8] Huang Z, Memmolo P, Ferraro P, Cao L. Dual-plane coupled phase retrieval for non-prior holographic imaging. PhotoniX 3, 3, (2022).
    [9] Li Y, Shen C, Tan J, Wen X, Sun M, Huang G, Liu S, Liu Z. Fast quantitative phase imaging based on Kramers-Kronig relations in space domain. Opt Express. 2021;29:41067–80.
    [10] Ren H, Wu ST. Variable-focus liquid lens by changing aperture. Appl Phys Lett. 2005;86:211107.
    [11] Ren H, Wu ST. Variable-focus liquid lens. Opt Express. 2007;15:5931–6.
    [12] Ren H, Xianyu HQ, Xu S, Wu ST. Adaptive dielectric liquid lens. Opt Express. 2008;16:14954–60.
    [13] Zhan T, Xiong JH, Zou JY, Wu ST. Multifocal displays: review and prospect. PhotoniX. 2020;1:10.
    [14] Hack MA, Tewes W, Xie QG, Datt C, Harth K, Harting J, Snoeijer JH. Self-similar liquid lens coalescence. Phys Rev Lett. 2020;124:194502.
    [15] Dai B, Jiao Z, Zheng L, Bachman H, Fu YF, Wan XJ, Zhang YL, Huang Y, Han XD, Zhao CL, Huang T, Zhuang SL, Zhang DW: Colour compound lenses for a portable fluorescence microscope. Light: Science & Applications 8, 75 (2019).
    [16] Cheng Y, Cao J, Hao Q, Xiao YQ, Zhang FH, Xia WZ, Zhang KY, Yu HY. A novel denoising method for improving the performance of full-waveform LiDAR using differential optical path. Remote Sens. 2017;9:1109.
    [17] Tang B, Meng CZ, Zhuang L, Groenewold J, Qian YY, Sun ZQ, Liu XL, Gao J, Zhou GF. Field-induced wettability gradients for no-loss transport of oil droplets on slippery surfaces. ACS Appl Mater Interfaces. 2020;12:38723–9.
    [18] Song XM, Zhang HX, Li DY, Jin QW, Jia DG, Liu TG, Wang C. Liquid lens with large focal length tunability fabricated in a polyvinyl chloride/dibutyl phthalate gel tube. Langmuir. 2019;36:1430–6.
    [19] Kong M, Chen D, Chen X, Liang ZC, Zhao R, Xu EM. Research of the human eye model with variable-focus liquid lens. Microfluidics & Nanofluidics. 2017;21:40.
    [20] Wang D, Liu C, Shen C, Xing Y, Wang QH. Holographic capture and projection system of real object based on tunable zoom lens. PhotoniX. 2020;1:6.
    [21] Wang ZYH, Liu YZ, Gong CY, Yuan ZY, Shen L, Chang PX, Liu K, Xu TH, Jiang JF, Chen YC, Liu TG. Liquid crystal-amplified optofluidic biosensor for ultra-highly sensitive and stable protein assay. PhotoniX. 2021;2:18.
    [22] Lan G, Mauger TF, Li G. Design of high-performance adaptive objective lens with large optical depth scanning range for ultrabroad near infrared microscopic imaging. Biomedical Opt Express. 2015;6:3362–77.
    [23] Murali S, Thompson KP, Rolland JP. Three-dimensional adaptive microscopy using embedded liquid lens. Opt Lett. 2009;34:145–7.
    [24] Kanhere A, Lin G, Jiang H. Remote axial tuning in microscopy utilizing hydrogel-driven tunable liquid lens. J Microelectromech Syst. 2016;25:304–10.
    [25] Thériault G, Koninck YD, McCarthy N. Extended depth of field microscopy for rapid volumetric two-photon imaging. Opt Express. 2013;21:10095–104.
    [26] Qu YF, Hu YB. Analysis of axial scanning range and magnification variation in wide-field microscope for measurement using an electrically tunable lens. Microsc Res Tech. 2019;82:101–13.
    [27] Furieri T, Ancora D, Calisesi G, Morara S, Bassi A, Bonora S. Aberration measurement and correction on a large field of view in fluorescence microscopy. Biomedical Opt Express. 2022;13:262–73.
    [28] Bonora S, Jian Y, Zhang P, Zam A, Pugh EN Jr, Zawadzki RJ, Sarunic MV. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens. Opt Express. 2015;23:21931.
    [29] Wang ZJ, Lei L, Yao BL, Cai YN, Liang YS, Yang YL, Yang XL, Li H, Xiong DX. Compact multi-band fluorescent microscope with an electrically tunable lens for autofocusing. Biomedical Opt Express. 2015;6:4353–64.
    [30] Qu YF, Zhu SY, Ping Z. A self-adaptive and nonmechanical motion autofocusing system for optical microscopes. Microscopy Res Technique. 2016;79:1112.
    [31] Tehrani KF, Latchoumane CV, Southern WM, Pendleton EG, Mortensen LJ. Five-dimensional two-photon volumetric microscopy of in-vivo dynamic activities using liquid lens remote focusing. Biomedical Opt Express. 2019;10:3591.
    [32] Ma HG, Cheng ZW, Xiong ZY, Yang KD. S. H.: Fast controllable confocal focus photoacoustic microscopy using a synchronous zoom opto-sono objective. Opt Lett. 2019;44:1880–3.
    [33] Kuang FL, Yuan RY, Wang QH, Li L. Large zooming range adaptive microscope employing tunable objective and eyepiece. Sci Rep. 2020;10:14644.
    [34] Song C, Yang Y, Tu X, Chen Z, Lin C. A smartphone-based fluorescence microscope with hydraulically driven optofluidic lens for quantification of glucose. IEEE Sens J. 2021;21:1229–35.
    [35] Xi L, Song CL, Jiang HB. Confocal photoacoustic microscopy using a single multifunctional lens. Opt Lett. 2014;39:3328–31.
    [36] Dean JL, Hirsa AH. Performance of a microscope with an embedded oscillating pinned-contact liquid lens. Appl Opt. 2015;54:8228–34.
    [37] Li L, Wang D, Liu C, Wang QH. Zoom microscope objective using electrowetting lenses. Opt Express. 2016;24:2931–40.
    [38] Jiang Z, Wang D, Zheng Y, Liu C, Wang QH. Continuous optical zoom microscopy imaging system based on liquid lens. Opt Express. 2021;29:20322–35.
    [39] Qu YF, Zhang P, Hu YB. 3D measurements of micro-objects based on monocular wide-field optical microscopy with extended depth of field. Microscopy Res Technique. 2018;81:1434–42.
    [40] Qu YF, Hu YB, Zhang P. Nonmechanical and multiview 3D measurement microscope for workpiece with large slope and complex geometry. J Microsc. 2018;272:123–35.
    [41] Llavador A, Scrofani G, Saavedra G, Martinez-Corral M. Large depth-of-field integral microscopy by use of a liquid lens. Sensors. 2018;18:3383.
    [42] Mugele F, Baret JC. Electrowetting: from basics to applications. J Phys: Condens Matter. 2005;17:705–74.
    [43] Nayar SK, Nakagawa Y. Shape from focus. IEEE Trans Pattern Anal Mach Intell. 1989;16:824–31.
    [44] Tian YZ, Hu HJ, Cui HY, Yang SC, Qi J, Xu ZM, Li L. Three-dimensional surface microtopography recovery from a multifocus image sequence using an omnidirectional modified Laplacian operator with adaptive window size. Appl Opt. 2017;56:6300–10.
    [45] Toet A. Image fusion by a ratio of low-pass pyramid. Pattern Recognit Lett. 1989;9:245–53.
  • 加载中
计量
  • 文章访问数:  58
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-03
  • 录用日期:  2022-08-20
  • 网络出版日期:  2022-09-15

目录

    /

    返回文章
    返回