留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Carlos Ríos, Qingyang Du, Yifei Zhang, Cosmin-Constantin Popescu, Mikhail Y. Shalaginov, Paul Miller, Christopher Roberts, Myungkoo Kang, Kathleen A. Richardson, Tian Gu, Steven A. Vitale, Juejun Hu. Ultra-compact nonvolatile phase shifter based on electrically reprogrammable transparent phase change materials[J]. PhotoniX. doi: 10.1186/s43074-022-00070-4
Citation: Carlos Ríos, Qingyang Du, Yifei Zhang, Cosmin-Constantin Popescu, Mikhail Y. Shalaginov, Paul Miller, Christopher Roberts, Myungkoo Kang, Kathleen A. Richardson, Tian Gu, Steven A. Vitale, Juejun Hu. Ultra-compact nonvolatile phase shifter based on electrically reprogrammable transparent phase change materials[J]. PhotoniX. doi: 10.1186/s43074-022-00070-4

doi: 10.1186/s43074-022-00070-4

Ultra-compact nonvolatile phase shifter based on electrically reprogrammable transparent phase change materials

Funds: The authors acknowledge fabrication facility support by the MIT Microsystems Technology Laboratories, the Materials Research Laboratory, and the Lincoln Laboratory Microelectronic Laboratory.
  • [1] Bogaerts W, et al. Programmable photonic circuits. Nature. 2020;586:207–16.
    [2] Carolan J, et al. Universal linear optics. Sci (1979). 2015;349:711–6.
    [3] Cheng Q, Bahadori M, Glick M, Rumley S, Bergman K. Recent advances in optical technologies for data centers: a review. Optica. 2018;5:1354.
    [4] Sun J, Timurdogan E, Yaacobi A, Hosseini ES, Watts MR. Large-scale nanophotonic phased array. Nature. 2013;493:195.
    [5] Kita DM, et al. High-performance and scalable on-chip digital Fourier transform spectroscopy. Nat Commun. 2018;9:1–7.
    [6] Shen Y, et al. Deep learning with coherent nanophotonic circuits. Nat Photonics. 2017;11:441–6.
    [7] Arrazola JM, et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature. 2021;591:54–60.
    [8] Witzens J High-Speed Silicon Photonics Modulators. Proceedings of the IEEE106, 2158–2182 (2018).
    [9] Pfeifle J, Alloatti L, Freude W, Leuthold J, Koos C. Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid-crystal cladding. Opt Express. 2012;20:15359.
    [10] Melikyan A, et al. High-speed plasmonic phase modulators. Nat Photonics. 2014;8:229–33.
    [11] Abel S, et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat Mater. 2019;18:42–7.
    [12] Harris NC, et al. Efficient, compact and low loss thermo-optic phase shifter in silicon. Opt Express. 2014;22:10487.
    [13] Grottke T, Hartmann W, Schuck C, Pernice, W. H. P. Optoelectromechanical phase shifter with low insertion loss and a 13π tuning range. Opt Express. 2021;29:5525.
    [14] Grajower M, Mazurski N, Shappir J, Levy U. Non-Volatile Silicon Photonics Using Nanoscale Flash Memory Technology. Laser Photon Rev. 2018;12:1–8.
    [15] Errando-Herranz C, et al. MEMS for Photonic Integrated Circuits. IEEE Journal of Selected Topics in Quantum Electronics 26, (2020).
    [16] Geler-Kremer J, et al. A Non-Volatile Optical Memory in Silicon Photonics. 2021 Optical Fiber Communications Conference and Exhibition, OFC 2021 - Proceedings 12–14 (2021).
    [17] Wuttig M, Bhaskaran H, Taubner T. Phase-change materials for non-volatile photonic applications. Nat Photonics. 2017;11:465–76.
    [18] Abdollahramezani S, et al. Tunable nanophotonics enabled by chalcogenide phase-change materials. Nanophotonics. 2020;9:1189–241.
    [19] Wang J, Wang L, Liu J. Overview of Phase-Change Materials Based Photonic Devices. IEEE Access. 2020;8:121211–45.
    [20] Rios C, et al. Integrated all-photonic non-volatile multi-level memory. Nat Photonics. 2015;9:725–32.
    [21] Zhang H, et al. Ultracompact Si-GST hybrid waveguides for nonvolatile light wave manipulation. IEEE Photonics J. 2018;10:1–10.
    [22] Zhang Q, et al. Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit. Opt Lett. 2018;43:94.
    [23] Michel AKU, et al. Using low-loss phase-change materials for mid-infrared antenna resonance tuning. Nano Lett. 2013;13:3470–5.
    [24] Dong W, et al. Wide Bandgap Phase Change Material Tuned Visible Photonics. Adv Funct Mater. 2019;29:1806181.
    [25] Liu H, et al. Rewritable color nanoprints in antimony trisulfide films. Sci Adv. 2020;6:7171–87.
    [26] Fang Z, et al. Non-Volatile Reconfigurable Integrated Photonics Enabled by Broadband Low-Loss Phase Change Material. Adv Opt Mater. 2021;9:1–11.
    [27] Delaney M, Zeimpekis I, Lawson D, Hewak DW, Muskens OL. A New Family of Ultralow Loss Reversible Phase-Change Materials for Photonic Integrated Circuits: Sb 2 S 3 and Sb 2 Se 3. Adv Funct Mater. 2020;30:2002447.
    [28] Delaney M, et al. Nonvolatile programmable silicon photonics using an ultralow-loss Sb 2 Se 3 phase change material. Sci Adv. 2021;7:1–8.
    [29] Faneca J, et al. Towards low loss non-volatile phase change materials in mid index waveguides. Neuromorphic Comput Eng. 2021;1:014004.
    [30] Zhang H, et al. Miniature Multilevel Optical Memristive Switch Using Phase Change Material. ACS Photonics. 2019;6:2205–12.
    [31] Li Y, et al. Coupled-ring-resonator-based silicon modulator for enhanced performance. Opt Express. 2008;16:13342.
    [32] Zhang Y, et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat Nanotechnol. 2021;16:661–6.
    [33] Zheng J, et al. Nonvolatile Electrically Reconfigurable Integrated Photonic Switch Enabled by a Silicon PIN Diode Heater. Adv Mater. 2020;32:2001218.
    [34] Farmakidis N, et al. Electronically Reconfigurable Photonic Switches Incorporating Plasmonic Structures and Phase Change Materials. Adv Sci. 2022;9:2200383.
    [35] Meng J, et al. Electrical Programmable Multi-Level Non-volatile Photonic Random-Access Memory. ArXiv.2203.13337 Preprint at https://doi.org/10.48550/ARXIV.2203.13337 (2022).
    [36] Zhang Y, et al. Myths and truths about optical phase change materials: A perspective. Appl Phys Lett 118, (2021).
    [37] Ríos C, et al. In-memory computing on a photonic platform. Sci Adv. 2019;5:eaau5759.
    [38] Fang Z, et al. Ultra-low-energy programmable non-volatile silicon photonics based on phase-change materials with graphene heaters. Nat Nanotechnol. 2022;17:842–8.
    [39] Taghinejad H, et al. ITO-based microheaters for reversible multi-stage switching of phase-change materials: towards miniaturized beyond-binary reconfigurable integrated photonics. Opt Express. 2021;29:20449.
    [40] Ríos C, et al. Multi-Level Electro‐Thermal Switching of Optical Phase‐Change Materials Using Graphene. Adv Photonics Res. 2020;2:2000034.
    [41] Youngblood N, et al. Reconfigurable Low-Emissivity Optical Coating Using Ultrathin Phase Change Materials. ACS Photonics. 2022;9:90–100.
    [42] Kato K, Kuwahara M, Kawashima H, Tsuruoka T, Tsuda H. Current-driven phase-change optical gate switch using indium-tin-oxide heater. Applied Physics Express 10, (2017).
    [43] Suzuki K, et al. Low-Insertion-Loss and Power-Efficient 32 × 32 Silicon Photonics Switch with Extremely High-∆ Silica PLC Connector. J Lightwave Technol. 2019;37:116–22.
    [44] Feldmann J, et al. Parallel convolution processing using an integrated photonic tensor coer. Nature vol. 589 52–58 Preprint at https://doi.org/10.1038/s41586-020-03070-1 (2021).
    [45] Wu C, et al. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nat Commun. 2021;12:1–8.
    [46] Shastri BJ, et al. Photonics for artificial intelligence and neuromorphic computing. Nat Photonics. 2021;15:102–14.
    [47] Zhang Y, et al. Transient Tap Couplers for Wafer-Level Photonic Testing Based on Optical Phase Change Materials. ACS Photonics. 2021;8:1903–8.
    [48] Jacques M, et al. Optimization of thermo-optic phase-shifter design and mitigation of thermal crosstalk on the SOI platform. Opt Express. 2019;27:10456.
    [49] Parra J, Hurtado J, Griol A, Sanchis P. Ultra-low loss hybrid ITO/Si thermo-optic phase shifter with optimized power consumption. Opt Express 28, (2020).
    [50] Vlasov YA, O’Boyle M, Hamann HF, McNab SJ. Active control of slow light on a chip with photonic crystal waveguides. Nature. 2005;438:65–9.
    [51] Zhang F, et al. Toward single lane 200G optical interconnects with silicon photonic modulator. J Lightwave Technol. 2019;38:67–74.
    [52] Kang G, et al. Silicon-Based Optical Phased Array Using Electro-Optic Phase Shifters. IEEE Photonics Technol Lett. 2019;31:1685–8.
    [53] Geler-Kremer J, et al. A ferroelectric multilevel non-volatile photonic phase shifter. Nat Photonics. 2022;16:491–7.
    [54] He M, et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s -1 and beyond. Nat Photonics. 2019;13:359–64.
    [55] Datta I, et al. Low-loss composite photonic platform based on 2D semiconductor monolayers. Nat Photonics 14, (2020).
    [56] Zhang Y, et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nat Commun. 2019;10:2–3.
    [57] Hu J, et al. Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor. Opt Express. 2007;15:2307.
    [58] Petit L, et al. Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses. J Solid State Chem. 2009;182:2756–61.
  • 加载中
计量
  • 文章访问数:  52
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-03
  • 录用日期:  2022-09-16
  • 修回日期:  2022-09-14
  • 网络出版日期:  2022-10-26

目录

    /

    返回文章
    返回