留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Yefeng Shu, Jiasong Sun, Jiaming Lyu, Yao Fan, Ning Zhou, Ran Ye, Guoan Zheng, Qian Chen, Chao Zuo. Adaptive optical quantitative phase imaging based on annular illumination Fourier ptychographic microscopy[J]. PhotoniX. doi: 10.1186/s43074-022-00071-3
Citation: Yefeng Shu, Jiasong Sun, Jiaming Lyu, Yao Fan, Ning Zhou, Ran Ye, Guoan Zheng, Qian Chen, Chao Zuo. Adaptive optical quantitative phase imaging based on annular illumination Fourier ptychographic microscopy[J]. PhotoniX. doi: 10.1186/s43074-022-00071-3

doi: 10.1186/s43074-022-00071-3

Adaptive optical quantitative phase imaging based on annular illumination Fourier ptychographic microscopy

Funds: This work was supported by the National Natural Science Foundation of China (61905115, 62105151, 62175109, U21B2033, 62105156), Leading Technology of Jiangsu Basic Research Plan (BK20192003), Youth Foundation of Jiangsu Province (BK20190445, BK20210338), Fundamental Research Funds for the Central Universities (30920032101), and Open Research Fund of Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense (JSGP202105, JSGP202201).
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • [1] Mir M, Bhaduri B, Wang R, Zhu R, Popescu G. Quantitative phase imaging Prog Opt. 2012;57(133–37):217.
    [2] Park Y, Depeursinge C, Popescu G. Quantitative phase imaging in biomedicine. Nat Photonics. 2018;12(10):578–89.
    [3] Fan Y, Li J, Lu L, Sun J, Hu Y, Zhang J, Li Z, Shen Q, Wang B, Zhang R, Chen Q, Zuo C. Smart computational light microscopes (SCLMs of smart computational imaging laboratory (SCILab. PhotoniX. 2021;2(1):19.
    [4] Kim MK. Principles and techniques of digital holographic microscopy. SPIE Rev. 2010;1(1): 018005.
    [5] Zhao R, Huang L, Wang Y. Recent advances in multi-dimensional metasurfaces holographic technologies. PhotoniX. 2020;1(1):20.
    [6] Huang Z, Memmolo P, Ferraro P, Cao L. Dual-plane coupled phase retrieval for non-prior holographic imaging. PhotoniX. 2022;3(1):3.
    [7] Popescu G, Deflores LP, Vaughan JC, Badizadegan K, Iwai H, Dasari RR, Feld MS. Fourier phase microscopy for investigation of biological structures and dynamics. Opt Lett. 2004;29(21):2503.
    [8] Wang Z, Millet L, Mir M, Ding H, Unarunotai S, Rogers J, Gillette MU, Popescu G. Spatial light interference microscopy (slim). Opt Express. 2011;19(2):1016–26.
    [9] Chanteloup J-C. Multiple-wave lateral shearing interferometry for wave-front sensing. Appl Opt. 2005;44(9):1559.
    [10] Bon P, Maucort G, Wattellier B, Monneret S. Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells. Opt Express. 2009;17(15):13080.
    [11] Barty A, Nugent K, Paganin D, Roberts A. Quantitative optical phase microscopy. Opt Lett. 1998;23(11):817–9.
    [12] Gureyev T, Roberts A, Nugent K. Partially coherent fields, the transport-of-intensity equation, and phase uniqueness. JOSA A. 1995;12(9):1942–6.
    [13] Zuo C, Sun J, Li J, Zhang J, Asundi A, Chen Q. High-resolution transport-of-intensity quantitative phase microscopy with annular illumination. Sci Rep. 2017;7(1):7654.
    [14] Hamilton D, Sheppard C. Differential phase contrast in scanning optical microscopy. J Microsc. 1984;133(1):27–39.
    [15] Tian L, Waller L. Quantitative differential phase contrast imaging in an LED array microscope. Opt Express. 2015;23(9):11394.
    [16] Fan Y, Sun J, Chen Q, Pan X, Tian L, Zuo C. Optimal illumination scheme for isotropic quantitative differential phase contrast microscopy. Photon Res. 2019;7(8):890.
    [17] Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy. Nat Photonics. 2013;7(9):739–45.
    [18] Ou X, Horstmeyer R, Yang C, Zheng G. Quantitative phase imaging via Fourier ptychographic microscopy. Opt Lett. 2013;38(22):4845.
    [19] Tian L, Liu Z, Yeh L-H, Chen M, Zhong J, Waller L. Computational illumination for high-speed in vitro Fourier ptychographic microscopy. Optica. 2015;2(10):904.
    [20] Zheng G, Shen C, Jiang S, Song P, Yang C. Concept, implementations and applications of fourier ptychography. Nat Rev Phys. 2021;3(3):207–23.
    [21] Greivenkamp JE. Field Guide to Geometrical Optics, vol. 1. Washington: SPIE Press Bellingham; 2004.
    [22] Park J, Brady DJ, Zheng G, Tian L, Gao L. Review of bio-optical imaging systems with a high space-bandwidth product. Adv Photonics. 2021;3(04). https://doi.org/10.1117/1.AP.3.4.044001.
    [23] Sun J, Zuo C, Zhang J, Fan Y, Chen Q. High-speed Fourier ptychographic microscopy based on programmable annular illuminations. Sci Rep. 2018;8(1):7669.
    [24] Fan Y, Sun J, Chen Q, Pan X, Trusiak M, Zuo C. Single-shot isotropic quantitative phase microscopy based on color-multiplexed differential phase contrast. APL Photon. 2019;4(12): 121301.
    [25] Li J, Matlock A, Li Y, Chen Q, Zuo C, Tian L. High-speed in vitro intensity diffraction tomography. Adv Photon. 2019;1(06):1.
    [26] Chang X, Bian L, Zhang J. Large-scale phase retrieval eLight. 2021;1(1):4.
    [27] Starkuviene V, Pepperkok R. The potential of high-content high-throughput microscopy in drug discovery. Br J Pharmacol. 2007;152(1):62–71.
    [28] Glory E, Murphy RF. Automated subcellular location determination and high-throughput microscopy. Dev Cell. 2007;12(1):7–16.
    [29] Park Y, Best CA, Badizadegan K, Dasari RR, Feld MS, Kuriabova T, Henle ML, Levine AJ, Popescu G. Measurement of red blood cell mechanics during morphological changes. Proc Natl Acad Sci. 2010;107(15):6731–6.
    [30] Li Y, Di J, Wang K, Wang S, Zhao J. Classification of cell morphology with quantitative phase microscopy and machine learning. Opt Express. 2020;28(16):23916–27.
    [31] Lukosz W. Optical Systems with Resolving Powers Exceeding the Classical Limit*. J Opt Soc Am. 1966;56(11):1463.
    [32] Schroeder T. Long-term single-cell imaging of mammalian stem cells. Nat Methods. 2011;8(S4):30–5.
    [33] Shirasaki Y, Yamagishi M, Suzuki N, Izawa K, Nakahara A, Mizuno J, Shoji S, Heike T, Harada Y, Nishikomori R, Ohara O. Real-time single-cell imaging of protein secretion. Sci Rep. 2015;4(1):4736.
    [34] Skylaki S, Hilsenbeck O, Schroeder T. Challenges in long-term imaging and quantification of single-cell dynamics. Nat Biotechnol. 2016;34(11):1137–44.
    [35] Adie SG, Graf BW, Ahmad A, Carney PS, Boppart SA. Computational adaptive optics for broadband optical interferometric tomography of biological tissue. Proc Natl Acad Sci. 2012;109(19):7175–80.
    [36] Davies R, Kasper M. Adaptive optics for astronomy. arXiv preprint arXiv:1201.5741. 2012.
    [37] Tyson RK, Frazier BW. Principles of Adaptive Optics, CRC Press, 2022.
    [38] Booth MJ. Adaptive optical microscopy: The ongoing quest for a perfect image. Light Sci Appl. 2014;3(4):165–165.
    [39] Guo Y, Zhong L, Min L, Wang J, Wu Y, Chen K, et al. Adaptive optics based on machine learning: a review. Opto Electron Adv. 2022;5(7):200082.
    [40] Tao X, Fernandez B, Azucena O, Fu M, Garcia D, Zuo Y, Chen DC, Kubby J. Adaptive optics confocal microscopy using direct wavefront sensing. Opt Lett. 2011;36(7):1062.
    [41] Gould TJ, Burke D, Bewersdorf J, Booth MJ. Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt Express. 2012;20(19):20998.
    [42] Ou X, Zheng G, Yang C. Embedded pupil function recovery for Fourier ptychographic microscopy. Opt Express. 2014;22(5):4960.
    [43] Chung J, Kim J, Ou X, Horstmeyer R, Yang C. Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography. Biomed Opt Express. 2016;7(2):352.
    [44] Song P, Jiang S, Zhang H, Huang X, Zhang Y, Zheng G. Full-field Fourier ptychography (FFP: Spatially varying pupil modeling and its application for rapid field-dependent aberration metrology. APL Photon. 2019;4(5): 050802.
    [45] Kam Z, Hanser B, Gustafsson MGL, Agard DA, Sedat JW. Computational adaptive optics for live three-dimensional biological imaging. Proceedings of the National Academy of Sciences. 2001;98(7):3790–5.
    [46] South FA, Liu Y-Z, Bower AJ, Xu Y, Carney PS, Boppart SA. Wavefront measurement using computational adaptive optics. J Opt Soc Am A. 2018;35(3):466.
    [47] Sun J, Chen Q, Zhang Y, Zuo C. Sampling criteria for Fourier ptychographic microscopy in object space and frequency space. Opt Express. 2016;24(14):15765.
    [48] Baek Y, Park Y. Intensity-based holographic imaging via space-domain Kramers-Kronig relations. Nat Photonics. 2021;15(5):354–60.
    [49] Li J, Zhou N, Sun J, Zhou S, Bai Z, Lu L, Chen Q, Zuo C. Transport of intensity diffraction tomography with non-interferometric synthetic aperture for three-dimensional label-free microscopy. Light Sci Appl. 2022;11(1):154.
    [50] Yeh L-H, Dong J, Zhong J, Tian L, Chen M, Tang G, Soltanolkotabi M, Waller L. Experimental robustness of Fourier ptychography phase retrieval algorithms. Opt Express. 2015;23(26):33214.
    [51] Bian L, Suo J, Zheng G, Guo K, Chen F, Dai Q. Fourier ptychographic reconstruction using wirtinger flow optimization. Opt Express. 2015;23(4):4856–66.
    [52] Rodenburg JM, Faulkner HML. A phase retrieval algorithm for shifting illumination. Appl Phys Lett. 2004;85(20):4795–7.
    [53] Guizar-Sicairos M, Fienup JR. Phase retrieval with transverse translation diversity: A nonlinear optimization approach. Opt Express. 2008;16(10):7264.
    [54] Maiden A, Johnson D, Li P. Further improvements to the ptychographical iterative engine. Optica. 2017;4(7):736.
    [55] Maiden AM, Rodenburg JM. An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy. 2009;109(10):1256–62.
    [56] Wang JY, Silva DE. Wave-front interpretation with Zernike polynomials. Appl Opt. 1980;19(9):1510.
    [57] Lakshminarayanan V, Fleck A. Zernike polynomials: A guide. J Mod Opt. 2011;58(7):545–61.
    [58] Zhang S, Zhou G, Zheng C, Li T, Hu Y, Hao Q. Fast digital refocusing and depth of field extended fourier ptychography microscopy. Biomed Opt Express. 2021;12(9):5544–58.
    [59] Ho GH, Cheng A, Chen C-J, Fang C-K, Li MC, Chang I-C, Chu P, Chu Y, Shu K, Huang C, et al. Lens heating-induced focus drift of i-line step and scan: correction and control in a manufacturing environment. In: Metrology, Inspection, and Process Control for Microlithography XV, vol. 4344. SPIE; 2001. pp. 289–296.
    [60] Lee SH, Baday M, Tjioe M, Simonson PD, Zhang R, Cai E, Selvin PR. Using fixed fiduciary markers for stage drift correction. Opt Express. 2012;20(11):12177.
    [61] Cheng B-J, Liu H-C, Cui Y, Guo J. Improving image control by correcting the lens-heating focus drift. In: Optical Microlithography XIII, vol. 4000. SPIE; 2000. pp. 818–826.
    [62] Kreft M, Stenovec M, Zorec R. Focus-Drift Correction in Time-Lapse Confocal Imaging. Ann N Y Acad Sci. 2005;1048(1):321–30.
    [63] Grover G, Mohrman W, Piestun R. Real-time adaptive drift correction for super-resolution localization microscopy. Opt Express. 2015;23(18):23887.
    [64] Kamal T, Yang L, Lee WM. In situ retrieval and correction of aberrations in moldless lenses using Fourier ptychography. Opt Express. 2018;26(3):2708.
    [65] Konda PC, Taylor JM, Harvey AR. Multi-aperture fourier ptychographic microscopy, theory and validation. Opt Lasers Eng. 2021;138: 106410.
    [66] Aidukas T, Eckert R, Harvey AR, Waller L, Konda PC. Low-cost, sub-micron resolution, wide-field computational microscopy using opensource hardware. Sci Rep. 2019;9(1):7457.
    [67] Shen C, Chan ACS, Chung J, Williams DE, Hajimiri A, Yang C. Computational aberration correction of VIS-NIR multispectral imaging microscopy based on Fourier ptychography. Opt Express. 2019;27(18):24923.
    [68] Tian L, Waller L. 3d intensity and phase imaging from light field measurements in an led array microscope. Optica. 2015;2(2):104–11.
    [69] Horstmeyer R, Chung J, Ou X, Zheng G, Yang C. Diffraction tomography with fourier ptychography. Optica. 2016;3(8):827–35.
    [70] Zuo C, Sun J, Li J, Asundi A, Chen Q. Wide-field high-resolution 3D microscopy with Fourier ptychographic diffraction tomography. Opt Lasers Eng. 2020;128: 106003.
    [71] Zhou S, Li J, Sun J, Zhou N, Chen Q, Zuo C. Accelerated fourier ptychographic diffraction tomography with sparse annular led illuminations. J Biophotonics. 2022;15(3):202100272.
  • 加载中
计量
  • 文章访问数:  55
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-19
  • 录用日期:  2022-10-05
  • 修回日期:  2022-09-28
  • 网络出版日期:  2022-10-21

目录

    /

    返回文章
    返回