[1] |
Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science. 2006;314(5801):977–80. https://doi.org/10.1126/science.1133628.
|
[2] |
Ni X, Wong ZJ, Mrejen M, Wang Y, Zhang X. An ultrathin invisibility skin cloak for visible light. Science. 2015;349(6254):1310–4. https://doi.org/10.1126/science.aac9411.
|
[3] |
Jahani Y, Arvelo ER, Yesilkoy F, Koshelev K, Cianciaruso C, De Palma M, et al. Imaging-based spectrometer-less optofluidic biosensors based on dielectric metasurfaces for detecting extracellular vesicles. Nat Commun. 2021;12(1):3246. https://doi.org/10.1038/s41467-021-23257-y.
|
[4] |
Park J-H, Ndao A, Cai W, Hsu L, Kodigala A, Lepetit T, et al. Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing. Nat Phys. 2020;16(4):462–8. https://doi.org/10.1038/s41567-020-0796-x.
|
[5] |
Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ. Perfect metamaterial absorber. Phys Rev Lett. 2008;100(20):207402. https://doi.org/10.1103/PhysRevLett.100.207402.
|
[6] |
Tian J, Luo H, Li Q, Pei X, Du K, Qiu M. Near-infrared super-absorbing all-dielectric metasurface based on single-layer germanium nanostructures. Laser Photonics Rev. 2018;12(9):1800076. https://doi.org/10.1002/lpor.201800076.
|
[7] |
Yu N, Genevet P, Kats MA, Aieta F, Tetienne J-P, Capasso F, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science. 2011;334(6054):333–7. https://doi.org/10.1126/science.1210713.
|
[8] |
Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater. 2012;11(5):426–31. https://doi.org/10.1038/nmat3292.
|
[9] |
Ni X, Emani NK, Kildishev AV, Boltasseva A, Shalaev VM. Broadband light bending with plasmonic nanoantennas. Science. 2012;335(6067):427. https://doi.org/10.1126/science.1214686.
|
[10] |
Genevet P, Capasso F, Aieta F, Khorasaninejad M, Devlin R. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica. 2017;4(1):139–52. https://doi.org/10.1364/OPTICA.4.000139.
|
[11] |
Sun S, He Q, Hao J, Xiao S, Zhou L. Electromagnetic metasurfaces: physics and applications. Adv Opt Photonics. 2019;11(2):380–479. https://doi.org/10.1364/AOP.11.000380.
|
[12] |
Liu N, Mesch M, Weiss T, Hentschel M, Giessen H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 2010;10(7):2342–8. https://doi.org/10.1021/nl9041033.
|
[13] |
Qu C, Ma S, Hao J, Qiu M, Li X, Xiao S, et al. Tailor the functionalities of metasurfaces based on a complete phase diagram. Phys Rev Lett. 2015;115(23):235503. https://doi.org/10.1103/PhysRevLett.115.235503.
|
[14] |
Tian J, Li Q, Belov PA, Sinha RK, Qian W, Qiu M. High-q all-dielectric metasurface: super and suppressed optical absorption. ACS Photonics. 2020;7(6):1436–43. https://doi.org/10.1021/acsphotonics.0c00003.
|
[15] |
Li Y, Lin J, Guo H, Sun W, Xiao S, Zhou L. A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption. Adv Opt Mater. 2020;8(6):1901548. https://doi.org/10.1002/adom.201901548.
|
[16] |
Liang Y, Lin H, Koshelev K, Zhang F, Yang Y, Wu J, et al. Full-stokes polarization perfect absorption with diatomic metasurfaces. Nano Lett. 2021;21(2):1090–5. https://doi.org/10.1021/acs.nanolett.0c04456.
|
[17] |
Zhang S, Genov DA, Wang Y, Liu M, Zhang X. Plasmon-induced transparency in metamaterials. Phys Rev Lett. 2008;101(4):047401. https://doi.org/10.1103/PhysRevLett.101.047401.
|
[18] |
Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, et al. Plasmonic analogue of electromagnetically induced transparency at the drude damping limit. Nat Mater. 2009;8(9):758–62. https://doi.org/10.1038/nmat2495.
|
[19] |
Gu J, Singh R, Liu X, Zhang X, Ma Y, Zhang S, et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat Commun. 2012;3(1):1151. https://doi.org/10.1038/ncomms2153.
|
[20] |
Yang Y, Kravchenko II, Briggs DP, Valentine J. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat Commun. 2014;5(1):5753. https://doi.org/10.1038/ncomms6753.
|
[21] |
Wang C, Jiang X, Zhao G, Zhang M, Hsu CW, Peng B, et al. Electromagnetically induced transparency at a chiral exceptional point. Nat Phys. 2020;16(3):334–40. https://doi.org/10.1038/s41567-019-0746-7.
|
[22] |
Khorasaninejad M, Chen WT, Devlin RC, Oh J, Zhu AY, Capasso F. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science. 2016;352(6290):1190–4. https://doi.org/10.1126/science.aaf6644.
|
[23] |
Zhang F, Pu M, Li X, Gao P, Ma X, Luo J, et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin-orbit interactions. Adv Funct Mater. 2017;27(47):1704295. https://doi.org/10.1002/adfm.201704295.
|
[24] |
Lou Y, Fang Y, Ruan Z. Optical computation of divergence operation for vector fields. Phys Rev Appl. 2020;14(3):034013. https://doi.org/10.1103/PhysRevApplied.14.034013.
|
[25] |
Lee N, Kim R, Kim JY, Ko JB, Park S-HK, Kim SO, et al. Self-assembled nano–lotus pod metasurface for light trapping. ACS Photonics. 2021;8(6):1616–22. https://doi.org/10.1021/acsphotonics.0c01882.
|
[26] |
Kim M, Lee D, Yang Y, Kim Y, Rho J. Reaching the highest efficiency of spin hall effect of light in the near-infrared using all-dielectric metasurfaces. Nat Commun. 2022;13(1):2036. https://doi.org/10.1038/s41467-022-29771-x.
|
[27] |
Meng C, Thrane PCV, Ding F, Bozhevolnyi SI. Full-range birefringence control with piezoelectric mems-based metasurfaces. Nat Commun. 2022;13(1):2071. https://doi.org/10.1038/s41467-022-29798-0.
|
[28] |
Ma Q, Liu C, Xiao Q, Gu Z, Gao X, Li L, et al. Information metasurfaces and intelligent metasurfaces. Photonics Insights. 2022;1(1):R01. https://doi.org/10.3788/pi.2022.r01.
|
[29] |
Chen H-T, Zhou J, O’Hara JF, Chen F, Azad AK, Taylor AJ. Antireflection coating using metamaterials and identification of its mechanism. Phys Rev Lett. 2010;105(7):073901. https://doi.org/10.1103/PhysRevLett.105.073901.
|
[30] |
Chu H, Zhang H, Zhang Y, Peng R, Wang M, Hao Y, et al. Invisible surfaces enabled by the coalescence of anti-reflection and wavefront controllability in ultrathin metasurfaces. Nat Commun. 2021;12(1):4523. https://doi.org/10.1038/s41467-021-24763-9.
|
[31] |
Lavigne G, Caloz C. Generalized Brewster effect using bianisotropic metasurfaces. Opt Express. 2021;29(7):11361–70. https://doi.org/10.1364/oe.423078.
|
[32] |
Luo J, Chu H, Peng R, Wang M, Li J, Lai Y. Ultra-broadband reflectionless Brewster absorber protected by reciprocity. Light-Sci Appl. 2021;10(1):89. https://doi.org/10.1038/s41377-021-00529-2.
|
[33] |
Chu H, Xiong X, Gao Y-J, Luo J, Jing H, Li C-Y, et al. Diffuse reflection and reciprocity-protected transmission via a random-flip metasurface. Sci Adv. 2021;7(37):eabj0935. https://doi.org/10.1126/sciadv.abj0935.
|
[34] |
Epstein A, Wong JPS, Eleftheriades GV. Cavity-excited huygens’ metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures. Nat Commun. 2016;7(1):10360. https://doi.org/10.1038/ncomms10360.
|
[35] |
Chen K, Feng Y, Monticone F, Zhao J, Zhu B, Jiang T, et al. A reconfigurable active huygens’ metalens. Adv Mater. 2017;29(17):1606422. https://doi.org/10.1002/adma.201606422.
|
[36] |
Liu M, Choi D-Y. Extreme huygens’ metasurfaces based on quasi-bound states in the continuum. Nano Lett. 2018;18(12):8062–9. https://doi.org/10.1021/acs.nanolett.8b04774.
|
[37] |
Liu M, Powell DA, Zarate Y, Shadrivov IV. Huygens’ metadevices for parametric waves. Phys Rev X. 2018;8(3):031077. https://doi.org/10.1103/PhysRevX.8.031077.
|
[38] |
Pfeiffer C, Grbic A. Metamaterial huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys Rev Lett. 2013;110(19):197401. https://doi.org/10.1103/PhysRevLett.110.197401.
|
[39] |
Pfeiffer C, Emani NK, Shaltout AM, Boltasseva A, Shalaev VM, Grbic A. Efficient light bending with isotropic metamaterial huygens’ surfaces. Nano Lett. 2014;14(5):2491–7. https://doi.org/10.1021/nl5001746.
|
[40] |
Yu YF, Zhu AY, Paniagua-Domínguez R, Fu YH, Luk’yanchuk B, Kuznetsov AI. High-transmission dielectric metasurface with 2π phase control at visible wavelengths. Laser Photonics Rev. 2015;9(4):412–8. https://doi.org/10.1002/lpor.201500041.
|
[41] |
Fan K, Suen JY, Liu X, Padilla WJ. All-dielectric metasurface absorbers for uncooled terahertz imaging. Optica. 2017;4(6):601. https://doi.org/10.1364/OPTICA.4.000601.
|
[42] |
Asadchy VS, Faniayeu IA, Ra’di Y, Khakhomov SA, Semchenko IV, Tretyakov SA. Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption. Phys Rev X. 2015;5(3):031005. https://doi.org/10.1103/PhysRevX.5.031005.
|
[43] |
Zhou H, Zhen B, Hsu CW, Miller OD, Johnson SG, Joannopoulos JD, et al. Perfect single-sided radiation and absorption without mirrors. Optica. 2016;3(10):1079. https://doi.org/10.1364/OPTICA.3.001079.
|
[44] |
Londoño M, Sayanskiy A, Araque-Quijano JL, Glybovski SB, Baena JD. Broadband huygens’ metasurface based on hybrid resonances. Phys Rev Appl. 2018;10(3):034026. https://doi.org/10.1103/PhysRevApplied.10.034026.
|
[45] |
Feng T, Potapov AA, Liang Z, Xu Y. Huygens metasurfaces based on congener dipole excitations. Phys Rev Appl. 2020;13(2):021002. https://doi.org/10.1103/PhysRevApplied.13.021002.
|
[46] |
Prodan E, Radloff C, Halas NJ, Nordlander P. A hybridization model for the plasmon response of complex nanostructures. Science. 2003;302(5644):419–22. https://doi.org/10.1126/science.1089171.
|
[47] |
Fan JA, Wu C, Bao K, Bao J, Bardhan R, Halas NJ, et al. Self-assembled plasmonic nanoparticle clusters. Science. 2010;328(5982):1135–8. https://doi.org/10.1126/science.1187949.
|
[48] |
Zhang S, Ye Z, Wang Y, Park Y, Bartal G, Mrejen M, et al. Anti-hermitian plasmon coupling of an array of gold thin-film antennas for controlling light at the nanoscale. Phys Rev Lett. 2012;109(19):193902. https://doi.org/10.1103/PhysRevLett.109.193902.
|
[49] |
Lin J, Qiu M, Zhang X, Guo H, Cai Q, Xiao S, et al. Tailoring the lineshapes of coupled plasmonic systems based on a theory derived from first principles. Light-Sci Appl. 2020;9(1):158. https://doi.org/10.1038/s41377-020-00386-5.
|
[50] |
Fan S, Suh W, Joannopoulos JD. Temporal coupled-mode theory for the Fano resonance in optical resonators. J Opt Soc Am A. 2003;20(3):569–72. https://doi.org/10.1364/JOSAA.20.000569.
|
[51] |
Suh W, Wang Z, Fan S. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE J Quantum Electron. 2004;40(10):1511–8. https://doi.org/10.1109/JQE.2004.834773.
|
[52] |
Hsu CW, Zhen B, Lee J, Chua S-L, Johnson SG, Joannopoulos JD, et al. Observation of trapped light within the radiation continuum. Nature. 2013;499(7457):188–91. https://doi.org/10.1038/nature12289.
|
[53] |
We choose to design/characterize our resonator #2 with h set as the optimized value yielding the achromatic reflectionless bi-layer metasurface. While optical response of such a resonator slightly changes as h varies, we neglect such deviations in the discussions followed.
|