留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Jietao Liu, Wenhong Yang, Guofeng Song, Qiaoqiang Gan. Directly and instantly seeing through random diffusers by self-imaging in scattering speckles[J]. PhotoniX. doi: 10.1186/s43074-022-00080-2
Citation: Jietao Liu, Wenhong Yang, Guofeng Song, Qiaoqiang Gan. Directly and instantly seeing through random diffusers by self-imaging in scattering speckles[J]. PhotoniX. doi: 10.1186/s43074-022-00080-2

doi: 10.1186/s43074-022-00080-2

Directly and instantly seeing through random diffusers by self-imaging in scattering speckles

Funds: We wish to thank Haifeng Hu for inspiring discussions.
  • [1] Rotter S, Gigan S. Light fields in complex media: Mesoscopic scattering meets wave control. Rev Mod Phys. 2017;89:015005.
    [2] Kang S, Jeong S, Choi W, Ko H, Yang TD, Joo JH, et al. Imaging deep within a scattering medium using collective accumulation of single-scattered waves. Nat Photonics. 2015;9:253–8.
    [3] Lindell DB, Wetzstein G. Three-dimensional imaging through scattering media based on confocal diffuse tomography. Nat Commun. 2020;11:4517.
    [4] Katz O, Small E, Silberberg Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light. Nat Photonics. 2012;6:549–53.
    [5] Si K, Fiolka R, Cui M. Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation. Nat Photonics. 2012;6:657–61.
    [6] Park C, Park J-H, Rodriguez C, Yu H, Kim M, Jin K, et al. Full-field subwavelength imaging using a scattering Superlens. Phys Rev Lett. 2014;113:113901.
    [7] Newman JA, Webb KJ. Imaging optical fields through heavily scattering media. Phys Rev Lett. 2014;113:263903.
    [8] Satat G, Heshmat B, Raviv D, Raskar R. All photons imaging through volumetric scattering. Sci Rep. 2016;6:33946.
    [9] Escobet-Montalbán A, et al. Wide-field multiphoton imaging through scattering media without correction. Sci Adv. 2018;4:eaau1338.
    [10] La Cavera S, Pérez-Cota F, Smith RJ, Clark M. Phonon imaging in 3D with a fibre probe. Light Sci Appl. 2021;10:91.
    [11] Stellinga D, et al. Time-of-flight 3D imaging through multimode optical fibers. Science. 2021;374:1395–9.
    [12] Li S, Horsley SAR, Tyc T, Čižmár T, Phillips DB. Memory effect assisted imaging through multimode optical fibres. Nat Commun. 2021;12:3751.
    [13] Singh AK, Naik DN, Pedrini G, Takeda M, Osten W. Exploiting scattering media for exploring 3D objects. Light Sci Appl. 2017;6:e16219.
    [14] Rai MR, Vijayakumar A, Rosen J. Extending the field of view by a scattering window in an I-COACH system. Opt Lett. 2018;43:1043–6.
    [15] Popoff SM, et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys Rev Lett. 2010;104:100601.
    [16] Katz O, Ramaz F, Gigan S, Fink M. Controlling light in complex media beyond the acoustic diffraction-limit using the acousto-optic transmission matrix. Nat Commun. 2019;10:717.
    [17] Jang M, et al. Wavefront shaping with disorder-engineered metasurfaces. Nat Photonics. 2018;12:84–90.
    [18] Yeminy T, Katz O. Guidestar-free image-guided wavefront shaping. Sci Adv. 2021;7:eabf5364.
    [19] Bertolotti J, et al. Non-invasive imaging through opaque scattering layers. Nature. 2012;491:232–4.
    [20] Plöschner M, Tyc T, Čižmár T. Seeing through chaos in multimode fibres. Nat Photonics. 2015;9:529–35.
    [21] Sun L, Shi JH, Wu XY, Sun YW, Zeng GH. Photon-limited imaging through scattering medium based on deep learning. Opt Express. 2019;27:33120–34.
    [22] Li Y, Xue Y, Tian L. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media. Optica. 2018;5(10):1181–90.
    [23] Seow KLC, Török P, Foreman MR. Single pixel polarimetric imaging through scattering media. Opt Lett. 2020;45:5740–3.
    [24] Guo E, Zhu S, Sun Y, Bai L, Zuo C, Han J. Learning-based method to reconstruct complex targets through scattering medium beyond the memory effect. Opt Express. 2020;28:2433–46.
    [25] Katz O, Heidmann P, Fink M, Gigan S. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat Photonics. 2014;8:784–90.
    [26] Edrei E, Scarcelli G. Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media. Sci Rep. 2016;6:33558.
    [27] Antipa N, Kuo G, Heckel R, Mildenhall B, Bostan E, Ng R, et al. DiffuserCam: lensless single-exposure 3D imaging. Optica. 2018;5:1–9.
    [28] Monakhova K, Yanny K, Aggarwal N, Waller L. Spectral DiffuserCam: lensless snapshot hyperspectral imaging with a spectral filter array. Optica. 2020;7:1298–307.
    [29] Xu X, Xie X, He H, Zhuang H, Zhou J, Thendiyammal A, et al. Imaging objects through scattering layers and around corners by retrieval of the scattered point spread function. Opt Express. 2017;25:32829–40.
    [30] Yang W, Li G, Situ G. Imaging through scattering media with the auxiliary of a known reference object. Sci Rep. 2018;8:9614.
    [31] Guo C, Liu J, Wu T, Zhu L, Shao X. Tracking moving targets behind a scattering medium via speckle correlation. Appl Opt. 2018;57:905–13.
    [32] Wu T, Katz O, Shao X, Gigan S. Single-shot diffraction-limited imaging through scattering layers via bispectrum analysis. Opt Lett. 2016;41:5003–6.
    [33] Wu T, Dong J, Shao X, Gigan S. Imaging through a thin scattering layer and jointly retrieving the point-spread-function using phase-diversity. Opt Express. 2017;25:27182–94.
    [34] Li W, Liu J, He S, Liu L, Shao X. Multitarget imaging through scattering media beyond the 3D optical memory effect. Opt Lett. 2020;45:2692–5.
    [35] Xie X, Zhuang H, He H, Xu X, Liang H, Liu Y, et al. Extended depth-resolved imaging through a thin scattering medium with PSF manipulation. Sci Rep. 2018;8:4585.
    [36] Okamoto Y, Horisaki R, Tanida J. Noninvasive three-dimensional imaging through scattering media by three-dimensional speckle correlation. Opt Lett. 2019;44(10):2526–9.
    [37] Li X, Greenberg JA, Gehm ME. Single-shot multispectral imaging through a thin scatterer. Optica. 2019;6:864–71.
    [38] Goodman JW. Speckle phenomena in optics: theory and applications: Roberts and Company (Englewood, Colorado).2007.
    [39] Fienup JR. Phase retrieval algorithms: a comparison. Appl Opt. 1982;21:2758–69.
    [40] Shechtman Y, Eldar YC, Cohen O, Chapman HN, Miao J, Segev M. Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Process Mag. 2015;32:87–109.
    [41] van Beijnum F, van Putten EG, Lagendijk A, Mosk AP. Frequency bandwidth of light focused through turbid media. Opt Lett. 2011;36:373–5.
    [42] Osnabrugge G, Horstmeyer R, Papadopoulos IN, Judkewitz B, Vellekoop IM. Generalized optical memory effect. Optica. 2017;4:886–92.
    [43] Liu H, Liu Z, Chen M, Han S, Wang LV. Physical picture of the optical memory effect. Photonics Res. 2019;7:1323–30.
    [44] Zhang R, Du J, He Y, Yuan D, Luo J, Wu D, et al. Characterization of the spectral memory effect of scattering media. Opt Express. 2021;29:26944–54.
    [45] Haskel M, Stern A. Modeling optical memory effects with phase screens. Opt Express. 2018;26:29231–43.
    [46] Liu Y, Chen L, Liu W, Liang X, Wan W. Resolution-enhanced imaging through scattering media by high-order correlation. Appl Opt. 2019;58:2350–7.
    [47] Lu D, Xing Q, Liao M, Situ G, Peng X, He W. Single-shot noninvasive imaging through scattering medium under white-light illumination. Opt Lett. 2022;47:1754–7.
    [48] Barbastathis G, Ozcan A, Situ G. On the use of deep learning for computational imaging. Optica. 2019;6:921–43.
    [49] Luo Y, Zhao Y, Li J, Çetintaş E, Rivenson Y, Jarrahi M, et al. Computational imaging without a computer: seeing through random diffusers at the speed of light. eLight. 2022;2(1):4.
    [50] Yılmaz H, Kühmayer M, Hsu CW, Rotter S, Cao H. Customizing the angular memory effect for scattering media. Phys Rev X. 2021;11:031010.
    [51] Sahu SP, Mahigir A, Chidester B, Veronis G, Gartia MR. Ultrasensitive three-dimensional orientation imaging of single molecules on Plasmonic Nanohole arrays using second harmonic generation. Nano Lett. 2019;19(9):6192–202.
  • 加载中
计量
  • 文章访问数:  62
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-05
  • 录用日期:  2022-11-28
  • 修回日期:  2022-11-23
  • 网络出版日期:  2023-01-03

目录

    /

    返回文章
    返回