留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Chang Liu, Wilhelm Eschen, Lars Loetgering, Daniel S. Penagos Molina, Robert Klas, Alexander Iliou, Michael Steinert, Sebastian Herkersdorf, Alexander Kirsche, Thomas Pertsch, Falk Hillmann, Jens Limpert, Jan Rothhardt. Visualizing the ultra-structure of microorganisms using table-top extreme ultraviolet imaging[J]. PhotoniX. doi: 10.1186/s43074-023-00084-6
Citation: Chang Liu, Wilhelm Eschen, Lars Loetgering, Daniel S. Penagos Molina, Robert Klas, Alexander Iliou, Michael Steinert, Sebastian Herkersdorf, Alexander Kirsche, Thomas Pertsch, Falk Hillmann, Jens Limpert, Jan Rothhardt. Visualizing the ultra-structure of microorganisms using table-top extreme ultraviolet imaging[J]. PhotoniX. doi: 10.1186/s43074-023-00084-6

doi: 10.1186/s43074-023-00084-6

Visualizing the ultra-structure of microorganisms using table-top extreme ultraviolet imaging

Funds: We thank Dirk Hoffmeister for his help with a fruitful contribution to the manuscript.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • [1] Balzarotti F, Eilers Y, Gwosch KC, Gynnå AH, Westphal V, Stefani FD, et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science. 2017;355(6325):606–12.
    [2] Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006;313(5793):1642–5.
    [3] Ross FM. Liquid cell electron microscopy. Cambridge: Cambridge University Press; 2016.
    [4] Vénien-Bryan C, Li Z, Vuillard L, Boutin JA. Cryo-electron microscopy and X-ray crystallography: complementary approaches to structural biology and drug discovery. Acta Crystallogr Sect F: Struct Biol Commun. 2017;73(4):174–83.
    [5] Jacobsen C. X-ray Microscopy. Cambridge: Cambridge University Press; 2019.
    [6] Paunesku T, Vogt S, Maser J, Lai B, Woloschak G. X-ray fluorescence microprobe imaging in biology and medicine. J Cel Biochem. 2006;99(6):1489–502.
    [7] Fahrni CJ. Biological applications of X-ray fluorescence microscopy: exploring the subcellular topography and speciation of transition metals. Curr Opin Chem Biol. 2007;11(2):121–7.
    [8] Matsuyama S, Shimura M, Fujii M, Maeshima K, Yumoto H, Mimura H, et al. Elemental mapping of frozen-hydrated cells with cryo-scanning X-ray fluorescence microscopy. X-Ray Spectrom. 2010;39(4):260–6.
    [9] Takman PA, Stollberg H, Johansson GA, Holmberg A, Lindblom M, Hertz HM. High-resolution compact X-ray microscopy. J Microsc. 2007;226(2):175–81.
    [10] Wachulak P, Torrisi A, Nawaz MF, Bartnik A, Adjei D, Vondrová Å, et al. A Compact “water window” microscope with 60 nm spatial resolution for applications in biology and nanotechnology. Microsc Microanal. 2015;21(5):1214–23.
    [11] Schneider G. Cryo X-ray microscopy with high spatial resolution in amplitude and phase contrast. Ultramicroscopy. 1998;75(2):85–104.
    [12] Yamamoto Y, Shinohara K. Application of X-ray microscopy in analysis of living hydrated cells. Anat Rec. 2002;269(5):217–23.
    [13] Berglund M, Rymell L, Peuker M, Wilhein T, Hertz HM. Compact water-window transmission X-ray microscopy. J Microsc. 2000;197(3):268–73.
    [14] Bertilson M, von Hofsten O, Vogt U, Holmberg A, Christakou AE, Hertz HM. Laboratory soft-x-ray microscope for cryotomography of biological specimens. Opt lett. 2011;36(14):2728–30.
    [15] Duke E, Dent K, Razi M, Collinson LM. Biological applications of cryo-soft X-ray tomography. J Microsc. 2014;255(2):65–70.
    [16] Nugent KA. Coherent methods in the X-ray sciences. Adv Phys. 2010;59(1):1–99.
    [17] Rodenburg J, Maiden A. Ptychography. Springer Handbook of Microscopy. 2019. p. 819–904.
    [18] Giewekemeyer K, Thibault P, Kalbfleisch S, Beerlink A, Kewish CM, Dierolf M, et al. Quantitative biological imaging by ptychographic X-ray diffraction microscopy. Proc Natl Acad Sci U S A. 2010;107(2):529–34.
    [19] Shapiro DA, Yu YS, Tyliszczak T, Cabana J, Celestre R, Chao W, et al. Chemical composition mapping with nanometre resolution by soft X-ray microscopy. Nat Photonics. 2014;8(10):765–9.
    [20] Jones MW, Elgass K, Junker MD, Luu MB, Ryan MT, Peele AG, et al. Mapping biological composition through quantitative phase and absorption X-ray ptychography. Sci rep. 2014;4(1):1–4.
    [21] Piazza V, Weinhausen B, Diaz A, Dammann C, Maurer C, Reynolds M, et al. Revealing the structure of stereociliary actin by x-ray nanoimaging. ACS Nano. 2014;8(12):12228–37.
    [22] Rodriguez JA, Xu R, Chen CC, Huang Z, Jiang H, Chen AL, et al. Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells. IUCrJ. 2015;2(5):575–83.
    [23] Rose M, Senkbeil T, von Gundlach AR, Stuhr S, Rumancev C, Dzhigaev D, et al. Quantitative ptychographic bio-imaging in the water window. Opt Express. 2018;26(2):1237–54.
    [24] McPherson A, Gibson G, Jara H, Johann U, Luk TS, McIntyre IA, et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. JOSA B. 1987;4(4):595–601.
    [25] Hädrich S, Rothhardt J, Krebs M, Demmler S, Klenke A, Tünnermann A, et al. Single-pass high harmonic generation at high repetition rate and photon flux. J Phys B. 2016;49(17):172002.
    [26] Rothhardt J, Tadesse GK, Eschen W, Limpert J. Table-top nanoscale coherent imaging with XUV light. J Opt. 2018;20(11):113001.
    [27] Tanksalvala M, Porter CL, Esashi Y, Wang B, Jenkins NW, Zhang Z, et al. Nondestructive, high-resolution, chemically specific 3D nanostructure characterization using phase-sensitive EUV imaging reflectometry. Sci Adv. 2021;7(5):eabd9667.
    [28] Loetgering L, Liu X, De Beurs AC, Du M, Kuijper G, Eikema KS, et al. Tailoring spatial entropy in extreme ultraviolet focused beams for multispectral ptychography. Optica. 2021;8(2):130–8.
    [29] Goldberger D, Schmidt D, Barolak J, Ivanic B, Durfee CG, Adams DE. Spatiospectral characterization of ultrafast pulse-beams by multiplexed broadband ptychography. Opt Express. 2021;29(20):32474–90.
    [30] Shanblatt ER, Porter CL, Gardner DF, Mancini GF, Karl RM Jr, Tanksalvala MD, et al. Quantitative chemically specific coherent diffractive imaging of reactions at buried interfaces with few nanometer precision. Nano Lett. 2016;16(9):5444–50.
    [31] Brooks NJ, Wang B, Binnie I, Tanksalvala MD, Esashi Y, Knobloch YL, et al. Temporal and spectral multiplexing for EUV multibeam ptychography with a high harmonic light source. Opt Express. 2022;30(17):30331–46.
    [32] Eschen W, Loetgering L, Schuster V, Klas R, Kirsche A, Berthold L, et al. Material-specific high-resolution table-top extreme ultraviolet microscopy. Light: Sci & Appl. 2022;11(1):1–0.
    [33] Nagata Y, Harada T, Watanabe T, Kinoshita H, Midorikawa K. At wavelength coherent scatterometry microscope using high-order harmonics for EUV mask inspection. Int J Extreme Manuf. 2019;1(3):032001.
    [34] Wang B, Brooks N, Tanksalvala M, Esashi Y, Jenkins N, Johnsen P. Robust and reliable actinic ptychographic imaging of highly periodic structures in EUV photomasks. Proc. SPIE 12293, Photomask Technology, 2022; 122930 N.
    [35] Gardner DF, Tanksalvala M, Shanblatt ER, Zhang X, Galloway BR, Porter CL, et al. Subwavelength coherent imaging of periodic samples using a 13.5 nm tabletop high-harmonic light source. Nat Photonics. 2017;11(4):259–63.
    [36] Attwood D. Soft x-rays and extreme ultraviolet radiation: principles and applications. Cambridge: Cambridge university press; 2000.
    [37] Baksh PD, Ostrčil M, Miszczak M, Pooley C, Chapman RT, Wyatt AS, et al. Quantitative and correlative extreme ultraviolet coherent imaging of mouse hippocampal neurons at high resolution. Sci Adv. 2020;6(18):eaaz3025.
    [38] Kirz J, Jacobsen C, Howells M. Soft X-ray microscopes and their biological applications. Q Rev Biophys. 1995;28(1):33–130.
    [39] Grebing C, Müller M, Buldt J, Stark H, Limpert J. Kilowatt-average-power compression of millijoule pulses in a gas-filled multi-pass cell. Opt Lett. 2020;45(22):6250–3.
    [40] Klas R, Kirsche A, Gebhardt M, Buldt J, Stark H, Hädrich S, et al. Ultra-short-pulse high-average-power megahertz-repetition-rate coherent extreme-ultraviolet light source. PhotoniX. 2021;2(1):1–8.
    [41] Klas R, Eschen W, Kirsche A, Rothhardt J, Limpert J. Generation of coherent broadband high photon flux continua in the XUV with a sub-two-cycle fiber laser. Opt Express. 2020;28(5):6188–96.
    [42] Guizar-Sicairos M, Holler M, Diaz A, Vila-Comamala J, Bunk O, Menzel A. Role of the illumination spatial-frequency spectrum for ptychography. Phys Rev B. 2012;86(10):100103.
    [43] Ostrowski SG, Paxon TL, Denault L, McEvoy KP, Smentkowski VS. Preparing Biological samples for analysis by high vacuum techniques. Microsc Today. 2009;17(2):48–53.
    [44] Howells MR, Beetz T, Chapman HN, Cui C, Holton JM, Jacobsen CJ, et al. An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy. J Electron Spectrosc Relat Phenom. 2009;170(1–3):4–12.
    [45] Nave C. The achievable resolution for X-ray imaging of cells and other soft biological material. IUCrJ. 2020;7(3):393–403.
    [46] Farmand M, Celestre R, Denes P, Kilcoyne AD, Marchesini S, Padmore H, et al. Near-edge X-ray refraction fine structure microscopy. Appl Phys Lett. 2017;110(6):063101.
    [47] Steinberg G. Hyphal growth: a tale of motors, lipids, and the spitzenkorper. Eukaryot Cell. 2007;6(3):351–60.
    [48] Henke BL, Gullikson EM, Davis JC. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50 – 30,000 eV, Z = 1–92. At Data Nucl Data Table 1993;54(2):181–342.
    [49] Clutterbuck AJ. Aspergillus nidulans. In Bacteria, Bacteriophages, and Fungi. Boston, MA: Springer; 1974. p. 447–510.
    [50] Schultzhaus Z, Zheng W, Wang Z, Mouriño-Pérez R, Shaw B. Phospholipid flippases DnfA and DnfB exhibit differential dynamics within the A. nidulans Spitzenkörper. Fungal Genet and Biol. 2017;99:26–8.
    [51] Riquelme M, Sánchez-León E. The Spitzenkörper: a choreographer of fungal growth and morphogenesis. Curr Opin Microbiol. 2014;20:27–33.
    [52] Huang X, Yan H, Harder R, Hwu Y, Robinson IK, Chu YS. Optimization of overlap uniformness for ptychography. Opt Express. 2014;22(10):12634–44.
    [53] Harada T, Teranishi N, Watanabe T, Zhou Q, Bogaerts J, Wang X. High-exposure-durability, high-quantum-efficiency (> 90%) backside-illuminated soft-X-ray CMOS sensor. Appl Phys Express. 2019;13(1):016502.
    [54] Huang X, Lauer K, Clark JN, Xu W, Nazaretski E, Harder R, et al. Fly-scan ptychography. Sci rep. 2015;5(1):1–5.
    [55] Loetgering L, Du M, Flaes DB., Aidukas T, Wechsler F, Molina DS, et al. PtyLab.m/py/jl: A cross-platform, open-source inverse modeling toolbox for conventional and Fourier ptychography. arXiv preprint arXiv:2301.06595. 2023.
    [56] Loetgering L, Du M, Eikema KS, Witte S. zPIE: an autofocusing algorithm for ptychography. Opt Lett. 2020;45(7):2030–3.
    [57] Maiden A, Johnson D, Li P. Further improvements to the ptychographical iterative engine. Optica. 2017;4(7):736–45.
    [58] Thibault P, Menzel A. Reconstructing state mixtures from diffraction measurements. Nature. 2013;494(7435):68–71.
    [59] Enders B. Development and application of decoherence models in ptychographic diffraction imaging. Doctoral dissertation, Technische Universität München; 2016.
    [60] Yao Y, Jiang Y, Klug J, Nashed Y, Roehrig C, Preissner C, et al. Broadband X-ray ptychography using multi-wavelength algorithm. J Synchrotron Radiat. 2021;28(1):309–17.
    [61] Odstrcil M, Baksh P, Boden SA, Card R, Chad JE, Frey JG, Brocklesby WS. Ptychographic coherent diffractive imaging with orthogonal probe relaxation. Opt express. 2016;24(8):8360–9.
  • 加载中
计量
  • 文章访问数:  52
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-25
  • 录用日期:  2023-01-17
  • 修回日期:  2023-01-12
  • 网络出版日期:  2023-01-24

目录

    /

    返回文章
    返回