留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Yue Dai, Kunpeng Jia, Guanghao Zhu, Hui Li, Yue Fei, Yuqing Guo, Hang Yuan, Hao Wang, Xiaoqing Jia, Qingyuan Zhao, Lin Kang, Jian Chen, Shi-ning Zhu, Peiheng Wu, Zhenda Xie, Labao Zhang. All-fiber device for single-photon detection[J]. PhotoniX. doi: 10.1186/s43074-023-00085-5
Citation: Yue Dai, Kunpeng Jia, Guanghao Zhu, Hui Li, Yue Fei, Yuqing Guo, Hang Yuan, Hao Wang, Xiaoqing Jia, Qingyuan Zhao, Lin Kang, Jian Chen, Shi-ning Zhu, Peiheng Wu, Zhenda Xie, Labao Zhang. All-fiber device for single-photon detection[J]. PhotoniX. doi: 10.1186/s43074-023-00085-5

doi: 10.1186/s43074-023-00085-5

All-fiber device for single-photon detection

Funds: The authors thank the technical support from the Collaborative Innovation Center of Advanced Microstructures.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • [1] Arrazola JM, Bergholm V, Brádler K, Bromley TR, Collins MJ, Dhand I, et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature. 2021;591(7848):54–60.
    [2] Bhaskar MK, Riedinger R, Machielse B, Levonian DS, Nguyen CT, Knall EN, et al. Experimental demonstration of memory-enhanced quantum communication. Nature. 2020;580(7801):60–4.
    [3] Elshaari AW, Pernice W, Srinivasan K, Benson O, Zwiller V. Hybrid integrated quantum photonic circuits. Nat Photonics. 2020;14(5):285–98.
    [4] Qiang X, Zhou X, Wang J, Wilkes CM, Loke T, O’Gara S, et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat Photonics. 2018;12(9):534–9.
    [5] Zhang M, Wang C, Hu Y, Shams-Ansari A, Ren T, Fan S, et al. Electronically programmable photonic molecule. Nat Photonics. 2019;13(1):36–40.
    [6] Cozzolino D, Bacco D, Da Lio B, Ingerslev K, Ding Y, Dalgaard K, et al. Orbital angular momentum states enabling fiber-based high-dimensional quantum communication. Phys Rev Appl. 2019;11(6):064058.
    [7] Galeotti F, Pisco M, Cusano A. Self-assembly on optical fibers: a powerful nanofabrication tool for next generation “lab-on-fiber” optrodes. Nanoscale. 2018;10(48):22673–700.
    [8] Vaiano P, Carotenuto B, Pisco M, Ricciardi A, Quero G, Consales M, et al. Lab on fiber technology for biological sensing applications. Laser Photonics Rev. 2016;10(6):922–61.
    [9] Xiong Y, Xu F. Multifunctional integration on optical fiber tips: challenges and opportunities. Advanced Photonics. 2020;2(6):064001.
    [10] Yang X, Gong C, Zhang C, Wang Y, Yan GF, Wei L, et al. Fiber Optofluidic microlasers: structures, characteristics, and applications. Laser Photonics Rev. 2022;16(1):2100171.
    [11] Giaquinto M, Aliberti A, Micco A, Gambino F, Ruvo M, Ricciardi A, et al. Cavity-enhanced lab-on-fiber technology: toward advanced biosensors and nano-opto-mechanical active devices. ACS Photonics. 2019;6(12):3271–80.
    [12] Ricciardi A, Zimmer M, Witz N, Micco A, Piccirillo F, Giaquinto M, et al. Integrated optoelectronic devices using lab-on-Fiber technology. Adv Mater Technol. 2022;7(9):2101681.
    [13] Consales M, Quero G, Spaziani S, Principe M, Micco A, Galdi V, et al. Metasurface-enhanced lab-on-fiber biosensors. Laser Photonics Rev. 2020;14(12):2000180.
    [14] Chen JH, Liang ZH, Yuan LR, Li C, Chen MR, Xia YD, et al. Towards an all-in fiber photodetector by directly bonding few-layer molybdenum disulfide to a fiber facet. Nanoscale. 2017;9(10):3424–8.
    [15] Plidschun M, Ren H, Kim J, Förster R, Maier SA, Schmidt MA. Ultrahigh numerical aperture meta-fibre for flexible optical trapping. Light Sci Appl. 2021;10(1):57.
    [16] Principe M, Consales M, Micco A, Crescitelli A, Castaldi G, Esposito E, et al. Optical fiber meta-tips. Light Sci Appl. 2017;6(3):e16226.
    [17] Umakoshi T, Saito Y, Verma P. Highly efficient plasmonic tip design for plasmon nanofocusing in near-field optical microscopy. Nanoscale. 2016;8(10):5634–40.
    [18] Zou M, Liao C, Liu S, Xiong C, Zhao C, Zhao J, et al. Fiber-tip polymer clamped-beam probe for high-sensitivity nanoforce measurements. Light Sci Appl. 2021;10(1):171.
    [19] Zhang L, Zhang H, Tang N, Chen X, Liu F, Sun X, et al. ‘Plug-and-play’ plasmonic metafibers for ultrafast fibre lasers. Light. Adv Manuf. 2022;3:45.
    [20] Savinov V, Zheludev NI. High-quality metamaterial dispersive grating on the facet of an optical fiber. Appl Phys Lett. 2017;111(9):091106.
    [21] Bayindir M, Sorin F, Abouraddy AF, Viens J, Hart SD, Joannopoulos JD, et al. Metal–insulator–semiconductor optoelectronic fibres. Nature. 2004;431(7010):826–9.
    [22] Korzh B, Zhao Q-Y, Allmaras JP, Frasca S, Autry TM, Bersin EA, et al. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector. Nat Photonics. 2020;14(4):250–5.
    [23] Chang J, Los JWN, Tenorio-Pearl JO, Noordzij N, Gourgues R, Guardiani A, et al. Detecting telecom single photons with 99.5−2.07+0.5% system detection efficiency and high time resolution. APL Photonics. 2021;6(3):036114.
    [24] Gol’Tsman GN, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, et al. Picosecond superconducting single-photon optical detector. Appl Phys Lett. 2001;79(6):705–7.
    [25] Ma X, Yuan X, Cao Z, Qi B, Zhang Z. Quantum random number generation. npj Quantum. Information. 2016;2(1):16021.
    [26] Ren M, Wu E, Liang Y, Jian Y, Wu G, Zeng H. Quantum random-number generator based on a photon-number-resolving detector. Phys Rev A. 2011;83(2):023820.
    [27] Schuck C, Guo X, Fan L, Ma X, Poot M, Tang HX. Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip. Nat Commun. 2016;7(1):10352.
    [28] Yu Y, Ma F, Luo X-Y, Jing B, Sun P-F, Fang R-Z, et al. Entanglement of two quantum memories via fibres over dozens of kilometres. Nature. 2020;578(7794):240–5.
    [29] Takesue H, Dyer SD, Stevens MJ, Verma V, Mirin RP, Nam SW. Quantum teleportation over 100  km of fiber using highly efficient superconducting nanowire single-photon detectors. Optica. 2015;2(10):832.
    [30] Tang Y-L, Yin H-L, Chen S-J, Liu Y, Zhang W-J, Jiang X, et al. Measurement-device-independent quantum key distribution over 200 km. Phys Rev Lett. 2014;113(19):190501.
    [31] Wang H, Qin J, Ding X, Chen M-C, Chen S, You X, et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 1014 -dimensional hilbert space. Phys Rev Lett. 2019;123(25):250503.
    [32] Zhong H-S, Wang H, Deng Y-H, Chen M-C, Peng L-C, Luo Y-H, et al. Quantum computational advantage using photons. Science. 2020;370(6523):1460–3.
    [33] Marsili F, Verma VB, Stern JA, Harrington S, Lita AE, Gerrits T, et al. Detecting single infrared photons with 93% system efficiency. Nat Photonics. 2013;7(3):210–4.
    [34] Gaggero A, Martini F, Mattioli F, Chiarello F, Cernansky R, Politi A, et al. Amplitude-multiplexed readout of single photon detectors based on superconducting nanowires. Optica. 2019;6(6):823.
    [35] Pernice WHP, Schuck C, Minaeva O, Li M, Goltsman GN, Sergienko AV, et al. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat Commun. 2012;3(1):1325.
    [36] Najafi F, Mower J, Harris NC, Bellei F, Dane A, Lee C, et al. On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat Commun. 2015;6(1):5873.
    [37] Buckley SM, Tait AN, Chiles J, McCaughan AN, Khan S, Mirin RP, et al. Integrated-photonic characterization of single-photon detectors for use in neuromorphic synapses. Phys Rev Appl. 2020;14(5):054008.
    [38] Shibata H, Hiraki T, Tsuchizawa T, Yamada K, Tokura Y, Matsuo S. A waveguide-integrated superconducting nanowire single-photon detector with a spot-size converter on a Si photonics platform. Supercond Sci Tech. 2019;32(3):034001.
    [39] Kahl O, Ferrari S, Rath P, Vetter A, Nebel C, Pernice WHP. High efficiency on-chip single-photon detection for diamond nanophotonic circuits. J Lightwave Technol. 2016;34(2):249–55.
    [40] Reithmaier G, Kaniber M, Flassig F, Lichtmannecker S, Müller K, Andrejew A, et al. On-chip generation, routing, and detection of resonance fluorescence. Nano Lett. 2015;15(8):5208–13.
    [41] Li J, Kirkwood RA, Baker LJ, Bosworth D, Erotokritou K, Banerjee A, et al. Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires. Opt Express. 2016;24(13):13931.
    [42] Tanner MG, Alvarez LSE, Jiang W, Warburton RJ, Barber ZH, Hadfield RH. A superconducting nanowire single photon detector on lithium niobate. Nanotechnology. 2012;23(50):505201.
    [43] Chen Q, Ge R, Zhang LB, Li FY, Zhang B, Jin FF, et al. Mid-infrared single photon detector with superconductor Mo0.8Si0.2 nanowire. Sci Bull. 2021;66(10):965–8.
    [44] Li FY, Han H, Chen Q, Zhang B, Bao H, Dai Y, et al. Saturation efficiency for detecting 1550 nm photons with a 2 x 2 array of Mo0.8Si0.2 nanowires at 2.2 K. Photonics Res. 2021;9(3):389–94.
    [45] Charaev I, Morimoto Y, Dane A, Agarwal A, Colangelo M, Berggren KK. Large-area microwire MoSi single-photon detectors at 1550 nm wavelength. Appl Phys Lett. 2020;116(24):242603.
    [46] Caloz M, Perrenoud M, Autebert C, Korzh B, Weiss M, Schönenberger C, et al. High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors. Appl Phys Lett. 2018;112(6):061103.
    [47] Reddy DV, Nerem RR, Nam SW, Mirin RP, Verma VB. Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm. Optica. 2020;7(12):1649–53.
    [48] Lita AE, Verma VB, Horansky RD, Shainline JM, Mirin RP, Nam S. Materials development for high efficiency superconducting nanowire single-photon detectors. MRS Online Proc Library. 2015;1807(1):1–6.
    [49] Zotova AN, Vodolazov DY. Intrinsic detection efficiency of superconducting nanowire single photon detector in the modified hot spot model. Supercond Sci Tech. 2014;27(12):125001.
    [50] Jia XQ, Kang L, Gu M, Yang XZ, Chen C, Tu XC, et al. Fabrication of a strain-induced high performance NbN ultrathin film by a Nb5N6 buffer layer on Si substrate. Supercond Sci Tech. 2014;27(3):035010.
    [51] Gourgues R, Los JWN, Zichi J, Chang J, Kalhor N, Bulgarini G, et al. Superconducting nanowire single photon detectors operating at temperature from 4 to 7 K. Opt Express. 2019;27(17):24601–9.
    [52] Miller AJ, Lita AE, Calkins B, Vayshenker I, Gruber SM, Nam SW. Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent. Opt Express. 2011;19(10):9102–10.
    [53] Verma VB, Korzh B, Bussieres F, Horansky RD, Dyer SD, Lita AE, et al. High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films. Opt Express. 2015;23(26):33792–801.
    [54] Wollman EE, Verma VB, Beyer AD, Briggs RM, Korzh B, Allmaras JP, et al. UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature. Opt Express. 2017;25(22):26792–801.
    [55] Korneeva YP, Manova NN, Florya IN, Mikhailov MY, Dobrovolskiy OV, Korneev AA, et al. Different single-photon response of wide and narrow superconducting. Phys Rev Appl. 2020;13(2):024011.
    [56] Sun XW, Qiu CY, Wu JY, Zhou HY, Pan T, Mao JM, et al. Broadband photodetection in a microfibergraphene device. Opt Express. 2015;23(19):25209–16.
    [57] Anant V, Kerman AJ, Dauler EA, Yang JKW, Rosfjord KM, Berggren KK. Optical properties of superconducting nanowire single-photon detectors. Opt Express. 2008;16(14):10750–61.
    [58] Baek B, Stern JA, Nam SW. Superconducting nanowire single-photon detector in an optical cavity for front-side illumination. Appl Phys Lett. 2009;95(19):191110.
    [59] Miki S, Takeda M, Fujiwara M, Sasaki M, Wang Z. Compactly packaged superconducting nanowire single-photon detector with an optical cavity for multichannel system. Opt Express. 2009;17(26):23557–64.
    [60] Lecocq F, Quinlan F, Cicak K, Aumentado J, Diddams SA, Teufel JD. Control and readout of a superconducting qubit using a photonic link. Nature. 2021;591(7851):575–9.
  • 加载中
图(1)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  4
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-09
  • 录用日期:  2023-02-01
  • 修回日期:  2023-01-29
  • 网络出版日期:  2023-02-07

目录

    /

    返回文章
    返回