[1] |
Arrazola JM, Bergholm V, Brádler K, Bromley TR, Collins MJ, Dhand I, et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature. 2021;591(7848):54–60.
|
[2] |
Bhaskar MK, Riedinger R, Machielse B, Levonian DS, Nguyen CT, Knall EN, et al. Experimental demonstration of memory-enhanced quantum communication. Nature. 2020;580(7801):60–4.
|
[3] |
Elshaari AW, Pernice W, Srinivasan K, Benson O, Zwiller V. Hybrid integrated quantum photonic circuits. Nat Photonics. 2020;14(5):285–98.
|
[4] |
Qiang X, Zhou X, Wang J, Wilkes CM, Loke T, O’Gara S, et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat Photonics. 2018;12(9):534–9.
|
[5] |
Zhang M, Wang C, Hu Y, Shams-Ansari A, Ren T, Fan S, et al. Electronically programmable photonic molecule. Nat Photonics. 2019;13(1):36–40.
|
[6] |
Cozzolino D, Bacco D, Da Lio B, Ingerslev K, Ding Y, Dalgaard K, et al. Orbital angular momentum states enabling fiber-based high-dimensional quantum communication. Phys Rev Appl. 2019;11(6):064058.
|
[7] |
Galeotti F, Pisco M, Cusano A. Self-assembly on optical fibers: a powerful nanofabrication tool for next generation “lab-on-fiber” optrodes. Nanoscale. 2018;10(48):22673–700.
|
[8] |
Vaiano P, Carotenuto B, Pisco M, Ricciardi A, Quero G, Consales M, et al. Lab on fiber technology for biological sensing applications. Laser Photonics Rev. 2016;10(6):922–61.
|
[9] |
Xiong Y, Xu F. Multifunctional integration on optical fiber tips: challenges and opportunities. Advanced Photonics. 2020;2(6):064001.
|
[10] |
Yang X, Gong C, Zhang C, Wang Y, Yan GF, Wei L, et al. Fiber Optofluidic microlasers: structures, characteristics, and applications. Laser Photonics Rev. 2022;16(1):2100171.
|
[11] |
Giaquinto M, Aliberti A, Micco A, Gambino F, Ruvo M, Ricciardi A, et al. Cavity-enhanced lab-on-fiber technology: toward advanced biosensors and nano-opto-mechanical active devices. ACS Photonics. 2019;6(12):3271–80.
|
[12] |
Ricciardi A, Zimmer M, Witz N, Micco A, Piccirillo F, Giaquinto M, et al. Integrated optoelectronic devices using lab-on-Fiber technology. Adv Mater Technol. 2022;7(9):2101681.
|
[13] |
Consales M, Quero G, Spaziani S, Principe M, Micco A, Galdi V, et al. Metasurface-enhanced lab-on-fiber biosensors. Laser Photonics Rev. 2020;14(12):2000180.
|
[14] |
Chen JH, Liang ZH, Yuan LR, Li C, Chen MR, Xia YD, et al. Towards an all-in fiber photodetector by directly bonding few-layer molybdenum disulfide to a fiber facet. Nanoscale. 2017;9(10):3424–8.
|
[15] |
Plidschun M, Ren H, Kim J, Förster R, Maier SA, Schmidt MA. Ultrahigh numerical aperture meta-fibre for flexible optical trapping. Light Sci Appl. 2021;10(1):57.
|
[16] |
Principe M, Consales M, Micco A, Crescitelli A, Castaldi G, Esposito E, et al. Optical fiber meta-tips. Light Sci Appl. 2017;6(3):e16226.
|
[17] |
Umakoshi T, Saito Y, Verma P. Highly efficient plasmonic tip design for plasmon nanofocusing in near-field optical microscopy. Nanoscale. 2016;8(10):5634–40.
|
[18] |
Zou M, Liao C, Liu S, Xiong C, Zhao C, Zhao J, et al. Fiber-tip polymer clamped-beam probe for high-sensitivity nanoforce measurements. Light Sci Appl. 2021;10(1):171.
|
[19] |
Zhang L, Zhang H, Tang N, Chen X, Liu F, Sun X, et al. ‘Plug-and-play’ plasmonic metafibers for ultrafast fibre lasers. Light. Adv Manuf. 2022;3:45.
|
[20] |
Savinov V, Zheludev NI. High-quality metamaterial dispersive grating on the facet of an optical fiber. Appl Phys Lett. 2017;111(9):091106.
|
[21] |
Bayindir M, Sorin F, Abouraddy AF, Viens J, Hart SD, Joannopoulos JD, et al. Metal–insulator–semiconductor optoelectronic fibres. Nature. 2004;431(7010):826–9.
|
[22] |
Korzh B, Zhao Q-Y, Allmaras JP, Frasca S, Autry TM, Bersin EA, et al. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector. Nat Photonics. 2020;14(4):250–5.
|
[23] |
Chang J, Los JWN, Tenorio-Pearl JO, Noordzij N, Gourgues R, Guardiani A, et al. Detecting telecom single photons with 99.5−2.07+0.5% system detection efficiency and high time resolution. APL Photonics. 2021;6(3):036114.
|
[24] |
Gol’Tsman GN, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, et al. Picosecond superconducting single-photon optical detector. Appl Phys Lett. 2001;79(6):705–7.
|
[25] |
Ma X, Yuan X, Cao Z, Qi B, Zhang Z. Quantum random number generation. npj Quantum. Information. 2016;2(1):16021.
|
[26] |
Ren M, Wu E, Liang Y, Jian Y, Wu G, Zeng H. Quantum random-number generator based on a photon-number-resolving detector. Phys Rev A. 2011;83(2):023820.
|
[27] |
Schuck C, Guo X, Fan L, Ma X, Poot M, Tang HX. Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip. Nat Commun. 2016;7(1):10352.
|
[28] |
Yu Y, Ma F, Luo X-Y, Jing B, Sun P-F, Fang R-Z, et al. Entanglement of two quantum memories via fibres over dozens of kilometres. Nature. 2020;578(7794):240–5.
|
[29] |
Takesue H, Dyer SD, Stevens MJ, Verma V, Mirin RP, Nam SW. Quantum teleportation over 100 km of fiber using highly efficient superconducting nanowire single-photon detectors. Optica. 2015;2(10):832.
|
[30] |
Tang Y-L, Yin H-L, Chen S-J, Liu Y, Zhang W-J, Jiang X, et al. Measurement-device-independent quantum key distribution over 200 km. Phys Rev Lett. 2014;113(19):190501.
|
[31] |
Wang H, Qin J, Ding X, Chen M-C, Chen S, You X, et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 1014 -dimensional hilbert space. Phys Rev Lett. 2019;123(25):250503.
|
[32] |
Zhong H-S, Wang H, Deng Y-H, Chen M-C, Peng L-C, Luo Y-H, et al. Quantum computational advantage using photons. Science. 2020;370(6523):1460–3.
|
[33] |
Marsili F, Verma VB, Stern JA, Harrington S, Lita AE, Gerrits T, et al. Detecting single infrared photons with 93% system efficiency. Nat Photonics. 2013;7(3):210–4.
|
[34] |
Gaggero A, Martini F, Mattioli F, Chiarello F, Cernansky R, Politi A, et al. Amplitude-multiplexed readout of single photon detectors based on superconducting nanowires. Optica. 2019;6(6):823.
|
[35] |
Pernice WHP, Schuck C, Minaeva O, Li M, Goltsman GN, Sergienko AV, et al. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat Commun. 2012;3(1):1325.
|
[36] |
Najafi F, Mower J, Harris NC, Bellei F, Dane A, Lee C, et al. On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat Commun. 2015;6(1):5873.
|
[37] |
Buckley SM, Tait AN, Chiles J, McCaughan AN, Khan S, Mirin RP, et al. Integrated-photonic characterization of single-photon detectors for use in neuromorphic synapses. Phys Rev Appl. 2020;14(5):054008.
|
[38] |
Shibata H, Hiraki T, Tsuchizawa T, Yamada K, Tokura Y, Matsuo S. A waveguide-integrated superconducting nanowire single-photon detector with a spot-size converter on a Si photonics platform. Supercond Sci Tech. 2019;32(3):034001.
|
[39] |
Kahl O, Ferrari S, Rath P, Vetter A, Nebel C, Pernice WHP. High efficiency on-chip single-photon detection for diamond nanophotonic circuits. J Lightwave Technol. 2016;34(2):249–55.
|
[40] |
Reithmaier G, Kaniber M, Flassig F, Lichtmannecker S, Müller K, Andrejew A, et al. On-chip generation, routing, and detection of resonance fluorescence. Nano Lett. 2015;15(8):5208–13.
|
[41] |
Li J, Kirkwood RA, Baker LJ, Bosworth D, Erotokritou K, Banerjee A, et al. Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires. Opt Express. 2016;24(13):13931.
|
[42] |
Tanner MG, Alvarez LSE, Jiang W, Warburton RJ, Barber ZH, Hadfield RH. A superconducting nanowire single photon detector on lithium niobate. Nanotechnology. 2012;23(50):505201.
|
[43] |
Chen Q, Ge R, Zhang LB, Li FY, Zhang B, Jin FF, et al. Mid-infrared single photon detector with superconductor Mo0.8Si0.2 nanowire. Sci Bull. 2021;66(10):965–8.
|
[44] |
Li FY, Han H, Chen Q, Zhang B, Bao H, Dai Y, et al. Saturation efficiency for detecting 1550 nm photons with a 2 x 2 array of Mo0.8Si0.2 nanowires at 2.2 K. Photonics Res. 2021;9(3):389–94.
|
[45] |
Charaev I, Morimoto Y, Dane A, Agarwal A, Colangelo M, Berggren KK. Large-area microwire MoSi single-photon detectors at 1550 nm wavelength. Appl Phys Lett. 2020;116(24):242603.
|
[46] |
Caloz M, Perrenoud M, Autebert C, Korzh B, Weiss M, Schönenberger C, et al. High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors. Appl Phys Lett. 2018;112(6):061103.
|
[47] |
Reddy DV, Nerem RR, Nam SW, Mirin RP, Verma VB. Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm. Optica. 2020;7(12):1649–53.
|
[48] |
Lita AE, Verma VB, Horansky RD, Shainline JM, Mirin RP, Nam S. Materials development for high efficiency superconducting nanowire single-photon detectors. MRS Online Proc Library. 2015;1807(1):1–6.
|
[49] |
Zotova AN, Vodolazov DY. Intrinsic detection efficiency of superconducting nanowire single photon detector in the modified hot spot model. Supercond Sci Tech. 2014;27(12):125001.
|
[50] |
Jia XQ, Kang L, Gu M, Yang XZ, Chen C, Tu XC, et al. Fabrication of a strain-induced high performance NbN ultrathin film by a Nb5N6 buffer layer on Si substrate. Supercond Sci Tech. 2014;27(3):035010.
|
[51] |
Gourgues R, Los JWN, Zichi J, Chang J, Kalhor N, Bulgarini G, et al. Superconducting nanowire single photon detectors operating at temperature from 4 to 7 K. Opt Express. 2019;27(17):24601–9.
|
[52] |
Miller AJ, Lita AE, Calkins B, Vayshenker I, Gruber SM, Nam SW. Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent. Opt Express. 2011;19(10):9102–10.
|
[53] |
Verma VB, Korzh B, Bussieres F, Horansky RD, Dyer SD, Lita AE, et al. High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films. Opt Express. 2015;23(26):33792–801.
|
[54] |
Wollman EE, Verma VB, Beyer AD, Briggs RM, Korzh B, Allmaras JP, et al. UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature. Opt Express. 2017;25(22):26792–801.
|
[55] |
Korneeva YP, Manova NN, Florya IN, Mikhailov MY, Dobrovolskiy OV, Korneev AA, et al. Different single-photon response of wide and narrow superconducting. Phys Rev Appl. 2020;13(2):024011.
|
[56] |
Sun XW, Qiu CY, Wu JY, Zhou HY, Pan T, Mao JM, et al. Broadband photodetection in a microfibergraphene device. Opt Express. 2015;23(19):25209–16.
|
[57] |
Anant V, Kerman AJ, Dauler EA, Yang JKW, Rosfjord KM, Berggren KK. Optical properties of superconducting nanowire single-photon detectors. Opt Express. 2008;16(14):10750–61.
|
[58] |
Baek B, Stern JA, Nam SW. Superconducting nanowire single-photon detector in an optical cavity for front-side illumination. Appl Phys Lett. 2009;95(19):191110.
|
[59] |
Miki S, Takeda M, Fujiwara M, Sasaki M, Wang Z. Compactly packaged superconducting nanowire single-photon detector with an optical cavity for multichannel system. Opt Express. 2009;17(26):23557–64.
|
[60] |
Lecocq F, Quinlan F, Cicak K, Aumentado J, Diddams SA, Teufel JD. Control and readout of a superconducting qubit using a photonic link. Nature. 2021;591(7851):575–9.
|