留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Different channels to transmit information in scattering media

Xuyu Zhang Jingjing Gao Yu Gan Chunyuan Song Dawei Zhang Songlin Zhuang Shensheng Han Puxiang Lai Honglin Liu

Xuyu Zhang, Jingjing Gao, Yu Gan, Chunyuan Song, Dawei Zhang, Songlin Zhuang, Shensheng Han, Puxiang Lai, Honglin Liu. Different channels to transmit information in scattering media[J]. PhotoniX. doi: 10.1186/s43074-023-00087-3
引用本文: Xuyu Zhang, Jingjing Gao, Yu Gan, Chunyuan Song, Dawei Zhang, Songlin Zhuang, Shensheng Han, Puxiang Lai, Honglin Liu. Different channels to transmit information in scattering media[J]. PhotoniX. doi: 10.1186/s43074-023-00087-3
Xuyu Zhang, Jingjing Gao, Yu Gan, Chunyuan Song, Dawei Zhang, Songlin Zhuang, Shensheng Han, Puxiang Lai, Honglin Liu. Different channels to transmit information in scattering media[J]. PhotoniX. doi: 10.1186/s43074-023-00087-3
Citation: Xuyu Zhang, Jingjing Gao, Yu Gan, Chunyuan Song, Dawei Zhang, Songlin Zhuang, Shensheng Han, Puxiang Lai, Honglin Liu. Different channels to transmit information in scattering media[J]. PhotoniX. doi: 10.1186/s43074-023-00087-3

Different channels to transmit information in scattering media

doi: 10.1186/s43074-023-00087-3

Different channels to transmit information in scattering media

Funds: We thank Dr. Guohai Situ for helpful discussions.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] MacKay DJC. Information theory, Inference and Learning Algorithms. Cambridge: Cambridge University Press; 2003.
    [2] Thomas M. Cover, elements of information theory. 2nd ed. Hoboken: Wiley; 2006.
    [3] Katz O, Heidmann P, Fink M, Gigan S. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat Photonics. 2014;8:784–90.
    [4] Zhipeng Y, Li H, Zhong T, Park J-H, Cheng S, Woo CM, et al. Controlling light in complex media via wavefront shaping: a versatile tool to deal with scattering in multidiscipline. Innovation. 2022;3(5):623–37.
    [5] Mitsuo T, Singh AK, Narayana ND, Giancarlo P, Wolfgang O. Holographic correloscopy-unconventional holographic techniques for imaging a three-dimensional object through an opaque diffuser or via a scattering wall: a review. IEEE Trans Industr Inform. 2015;12(4):1631–40.
    [6] Joseph W. Goodman, speckle phenomena in optics: theory and applications. Englewood: Roberts & Company Publishers; 2007.
    [7] Yılmaz H, Hsu CW, Yamilov A, Cao H. Transverse localization of transmission eigenchannels. Nat Photonics. 2019;13:352–8.
    [8] Yılmaz H, Hsu CW, Goetschy A, Bittner S, Rotter S, Yamilov A, et al. Angular memory effect of transmission Eigenchannels. Phys Rev Lett. 2019;123:203901.
    [9] Li S, Deng M, Lee J, Sinha A, Barbastathis G. Imaging through glass diffusers using densely connected convolutional networks. Optica. 2018;5:803–13.
    [10] Li Y, Xue Y, Tian L. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media. Optica. 2018;5:1181–90.
    [11] Horisaki R, Takagi R, Tanida J. Learning-based imaging through scattering media. Opt Express. 2016;24:13738–43.
    [12] Luo Y, Yan S, Li H, Lai P, Zheng Y. Towards smart optical focusing: deep learning-empowered dynamic wavefront shaping through nonstationary scattering media. Photon Res. 2021;9:B262–78.
    [13] Sun L, Shi J, Xiaoyan W, Sun Y, Zeng G. Photon-limited imaging through scattering medium based on deep learning. Opt Express. 2019;27:33120–34.
    [14] Lyu M, Wang H, Li G, Situ G. Learning-based lensless imaging through optically thick scattering media. Adv Photon. 2019;1(3):036002(1-10).
    [15] Rawat S, Wendoloski J, Wang A. cGAN-assisted imaging through stationary scattering media. Opt Express. 2022;30:18145–55.
    [16] Zhang X, Gao J, Song C, Zhang D, Zhuang S, Han S, Lai P, Liu H. Roles of scattered and ballistic photons in imaging through scattering media: a deep learning-based study. arXiv:2207.10263 [physics.optics]. https://doi.org/10.48550/arXiv.2207.10263.
    [17] Häusler G, Lange E. Feedback network with space invariant coupling. Appl Opt. 1990;29:4798–805.
    [18] Arguello H, Pinilla S, Peng Y, Ikoma H, Bacca J, Wetzstein G. Shift-variant color-coded diffractive spectral imaging system. Optica. 2021;8:1424–34.
    [19] Arigovindan M, Shaevitz J, McGowan J, Sedat JW, Agard DA. A parallel product-convolution approach for representing depth varying point spread functions in 3D widefield microscopy based on principal component analysis. Opt Express. 2010;18:6461–76.
    [20] Deng M, Li S, Zhang Z, Kang I, Fang NX, Barbastathis G. On the interplay between physical and content priors in deep learning for computational imaging. Opt Express. 2020;28:24152–70.
    [21] Moralis-Pegios M, Mourgias-Alexandris G, Tsakyridis A, Giamougiannis G, Totovic A, Dabos G, et al. Neuromorphic silicon photonics and hardware-aware deep learning for high-speed inference. J Lightwave Technol. 2022;40:3243–54.
    [22] Liu J, Chenghua F. MNIST data set recognition research based on TensorFlow framework. Int Core J Eng. 2021;7:410–4.
    [23] He Y, Duan S, Yuan Y, Chen H, Li J, Zhuo X. Semantic ghost imaging based on recurrent-neural-network. Opt Express. 2022;30:23475–84.
    [24] Yan Zhang, Steve Farrell, Michael Crowley, Lee Makowski, and Jack Deslippe. A Molecular-MNIST Dataset for Machine Learning Study on Diffraction Imaging and Microscopy. Biophotonics Congress: Biomedical Optics 2020 (Translational, Microscopy, OCT, OTS, BRAIN), OSA Technical Digest (Optica Publishing Group, 2020), paper JTh2A.28.
    [25] Zhang Z, Zheng Y, Tienan X, Upadhya A, Lim YJ, Mathews A, et al. Holo-UNet: hologram-to-hologram neural network restoration for high fidelity low light quantitative phase imaging of live cells. Biomed Opt Express. 2020;11:5478–87.
    [26] Feng J, Deng J, Li Z, Sun Z, Dou H, Jia K. End-to-end res-Unet based reconstruction algorithm for photoacoustic imaging. Biomed Opt Express. 2020;11:5321–40.
    [27] Deng J, Feng J, Li Z, Sun Z, Jia K. Unet-based for photoacoustic imaging artifact removal. Imaging and applied optics congress, OSA technical digest. Washington, DC: Optica Publishing Group; 2020. paper JTh2A.44.
    [28] Yu FTS, Jutamulia S, Yin S. Introduction to Information Optics: Academic Press; US. 2001. p. 73–5. ISBN 978-0-12-774811-5.
    [29] Gureyev T, Nesterets Y, de Hoog F. Spatial resolution, signal-to-noise and information capacity of linear imaging systems. Opt Express. 2016;24:17168–82.
    [30] Gureyev TE, Nesterets YI, de Hoog F, Schmalz G, Mayo SC, Mohammadi S, et al. Duality between noise and spatial resolution in linear systems. Opt Express. 2014;22:9087–94.
    [31] Mahalanobis A, Vijaya Kumar BVK, Sims SRF. Distance-classifier correlation filters for multiclass target recognition. Appl Opt. 1996;35:3127–33.
    [32] Kang S-J. SSIM preservation-based backlight dimming. J Display Technol. 2014;10:247–50.
    [33] Bakurov I, Buzzelli M, Schettini R, Castelli M, Vanneschi L. Structural similarity index (SSIM) revisited: a data-driven approach. Expert Syst Appl. 2022;189:116087.
    [34] Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004;13(4):600–12.
    [35] Liu H, Liu Z, Chen M, Han S, Wang LV. Physical picture of the optical memory effect. Photon Res. 2019;7:1323–30.
    [36] Zhang R, Jinye D, He Y, Yuan D, Luo J, Daixuan W, et al. Characterization of the spectral memory effect of scattering media. Opt Express. 2021;29:26944–54.
    [37] Scheibler S, Ackermann M, Malavalli A, Aegerter CM. Extending the field of view of imaging behind turbid media beyond the memory effect. OSA Continuum. 2019;2:1468–73.
    [38] Guo E, Zhu S, Sun Y, Bai L, Zuo C, Han J. Learning-based method to reconstruct complex targets through scattering medium beyond the memory effect. Opt Express. 2020;28:2433–46.
    [39] Levene M, Steckman GJ, Psaltis D. Method for controlling the shift invariance of optical correlators. Appl Opt. 1999;38:394–8.
    [40] Silvera E, Kotzer T, Shamir J. Adaptive pattern recognition with rotation, scale, and shift invariance. Appl Opt. 1995;34:1891–900.
    [41] Yanny K, Monakhova K, Shuai RW, Waller L. Deep learning for fast spatially varying deconvolution. Optica. 2022;9:96–9.
    [42] Horisaki R, Tanida J. Multi-channel data acquisition using multiplexed imaging with spatial encoding. Opt Express. 2010;18:23041–53.
    [43] Liu H, Lai P, Gao J, Liu Z, Shi J, Han S. Alternative interpretation of speckle autocorrelation imaging through scattering media. Photonic Sensors. 2022;12(3):220308.
  • 加载中
图(1)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-28
  • 录用日期:  2023-02-11
  • 修回日期:  2023-01-29
  • 网络出版日期:  2023-02-16

目录

    /

    返回文章
    返回