[1] |
Namiki S, Hasama T, Ishikawa H. Optical signal processing for energy-efficient dynamic optical path networks. In: 36th European Conference and Exhibition on Optical Communication (ECOC). 2010. p. 1–6.
|
[2] |
Willner A, Khaleghi S, Chitgarha M, Yilmaz O. All-optical signal processing. J Lightwave Technol. 2014;32:660–80.
|
[3] |
Shacham A, Bergman K, Carloni L. Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans Comput. 2008;57:1246–60.
|
[4] |
Yoo S. Optical packet and burst switching technologies for the future photonic internet. J Lightwave Technol. 2006;24:4468–92.
|
[5] |
Zheng S, Long Y, Gao D, Luo Y, Wang J. Chip-scale reconfigurable optical full-field manipulation: enabling a compact grooming photonic signal processor. ACS Photonics. 2020;7:1235–45.
|
[6] |
Cao X, Zheng S, Long Y, Ruan Z, Luo Y, Wang J. Mesh-structure-enabled programmable multitask photonic signal processor on a silicon chip. ACS Photonics. 2020;7:2658–75.
|
[7] |
Wonfor A, Wang H, Penty R, White I. Large port count high-speed optical switch fabric for use within datacenters. J Opt Commun Netw. 2011;3:A32–9.
|
[8] |
Cheng Q, Rumley S, Bahadori M, Bergman K. Photonic switching in high performance datacenters. Opt Express. 2018;26:16022–43.
|
[9] |
Chen Q, Zhang F, Ji R, Zhang L, Yang L. Universal method for constructing N-port non-blocking optical router based on 2 × 2 optical switch for photonic networks-on-chip. Opt Express. 2014;22:12614–27.
|
[10] |
Chen L, Chen Y. Compact, low-loss and low-power 8×8 broadband silicon optical switch. Opt Express. 2012;20:18977–85.
|
[11] |
Dong P, Zhang L, Dai D, Shi Y. All-optical switching of silicon nanobeam cavities with an ultra-compact heater utilizing the photothermal effect. ACS Photonics. 2021;9:197–202.
|
[12] |
Suzuki K, Tanizawa K, Matsukawa T, Cong G, Kim S, Suda S, Ohno M, Chiba T, Tadokoro H, Yanagihara M, Igarashi Y, Masahara M, Namiki S, Kawashima H. Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch. Opt Express. 2014;22:3887–94.
|
[13] |
Kwack M, Tanemura T, Higo A, Nakano Y. Monolithic InP strictly non-blocking 8×8 switch for high-speed WDM optical interconnection. Opt Express. 2012;20:28734–41.
|
[14] |
Takiguchi M, Takemura N, Tateno K, Nozaki K, Sasaki S, Sergent S, Kuramochi E, Wasawo T, Yokoo A, Shinya A, Notomi M. All-optical InAsP/InP nanowire switches integrated in a Si photonic crystal. ACS Photonics. 2020;7:1016–21.
|
[15] |
Seok T, Quack N, Han S, Wu M. 50×50 Digital silicon photonic switches with MEMS-actuated adiabatic couplers. In: Optical Fiber Communication Conference (OFC). 2015. p. M2B.4.
|
[16] |
Shi Y, Zhang Y, Wan Y, Yu Y, Zhang Y, Hu X, Xiao X, Xu H, Zhang L, Pan B. Silicon photonics for high-capacity data communications. Photonics Res. 2022;10:A106–34.
|
[17] |
Shi W, Tian Y, Gervais A. Scaling capacity of fiber-optic transmission systems via silicon photonics. Nanophotonics. 2020;9:4629–63.
|
[18] |
Winzer P, Neilson D, Chraplyvy A. Fiber-optic transmission and networking: the previous 20 and the next 20 years. Opt Express. 2018;26:24190–239.
|
[19] |
Li X, Yu J, Zhang J, Li F, Xu Y, Zhang Z, Xiao J. Fiber-wireless-fiber link for 100-Gb/s PDM-QPSK signal transmission at W-Band. IEEE Photon Technol Lett. 2014;26:1825–8.
|
[20] |
Richardson D, Fini J, Nelson L. Space-division multiplexing in optical fibres. Nat Photonics. 2013;7:354–62.
|
[21] |
Mitra P, Stark J. Nonlinear limits to the information capacity of optical fibre communications. Nature. 2001;411:1027–30.
|
[22] |
Wang J, Yang J, Fazal I, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner A. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photonics. 2012;6:488–96.
|
[23] |
van Uden R, Correa R, Lopez E, Huijskens F, Xia C, Li G, Schülzgen A, Waardt H, Koonen A, Okonkwo C. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat Photonics. 2014;8:865–70.
|
[24] |
Stuart H. Dispersive multiplexing in multimode optical fiber. Science. 2000;289:281–3.
|
[25] |
Rademacher G, Puttnam B, Luís R, Eriksson T, Fontaine N, Mazur M, Chen H, Ryf R, Neilson D, Sillard P, Achten F, Awaji Y, Furukawa H. Peta-bit-per-second optical communications system using a standard cladding diameter 15-mode fiber. Nat Commun. 2021;12:4238.
|
[26] |
Winzer P. Making spatial multiplexing a reality. Nat Photonics. 2014;8:345–8.
|
[27] |
Kawaguchi Y, Tsutsumi K. Mode multiplexing and demultiplexing devices using multimode interference couplers. Electron Lett. 2002;38:1.
|
[28] |
Zhang L, Lu D, Li Z, Pan B, Zhao L. C-band fundamental/first-order mode converter based on multimode interference coupler on InP substrate. J Semicond. 2016;37:124005.
|
[29] |
Uematsu T, Ishizaka Y, Kawaguchi Y, Saitoh K, Koshiba M. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission. J Lightwave Technol. 2012;30:2421.
|
[30] |
Riesen N, Love J. Design of mode-sorting asymmetric Y-junctions. Appl Opt. 2012;51:2778.
|
[31] |
Chen W, Wang P, Yang J. Mode multi/demultiplexer based on cascaded asymmetric Y-junctions. Opt Express. 2013;21:25113.
|
[32] |
Xing J, Li Z, Xiao X, Yu J, Yu Y. Two-mode multiplexer and demultiplexer based on adiabatic couplers. Opt Lett. 2013;38:3468.
|
[33] |
Wang J, He S, Dai D. On-chip silicon 8-channel hybrid (de) multiplexer enabling simultaneous mode-and polarization-division-multiplexing. Laser Photon Rev. 2014;8:L18.
|
[34] |
Li K, Cao X, Wan Y, Wu G, Wang J. Fundamental analyses of fabrication-tolerant high-performance silicon mode (de)multiplexer. Opt Express. 2022;30:22649–60.
|
[35] |
Ren F, Li J, Hu T, Tang R, Yu J, Mo Q, He Y, Chen Z, Li Z. Cascaded mode-division-multiplexing and time-division-multiplexing passive optical network based on low mode-crosstalk FMF and mode MUX/DEMUX. IEEE Photonics J. 2015;7:1.
|
[36] |
Leon-Saval S, Argyros A, Bland-Hawthorn J. Photonic lanterns: a study of light propagation in multimode to single-mode converters. Opt Express. 2010;18:8430.
|
[37] |
Tong Y, Zhou W, Wu X, Tsang H. Efficient mode multiplexer for few-mode fibers using integrated silicon-on-insulator waveguide grating coupler. IEEE J Quantum Electron. 2019;56:1.
|
[38] |
Zhang Z, Tong Y, Wang Y, Tsang H. Nonparaxial mode-size converter using an ultracompact metamaterial Mikaelian lens. J Lightwave Technol. 2020;39:2077.
|
[39] |
Zheng D, Doménech J, Pan W, Zou X, Yan L, Pérez D. Low-loss broadband 5 × 5 non-blocking Si3N4 optical switch matrix. Opt Lett. 2019;44:2629–32.
|
[40] |
Xing J, Li Z, Zhou P, Xiao X, Yu J, Yu Y. Nonblocking 4×4 silicon electro-optic switch matrix with push–pull drive. Opt Lett. 2013;38:3926–9.
|
[41] |
Wang T, Wang T, Lan S, Jiang J, Liu T. A novel method of polarization state control for polarization division multiplexing system. Chin Opt Lett. 2008;6(6):812–4.
|
[42] |
Yang Y, Geng C, Li F, Huang G, Li X. Coherent polarization beam combining approach based on polarization controlling in fiber devices. IEEE Photon Technol Lett. 2017;29:945–8.
|
[43] |
Lin Z, Dadalyan T, Villers S, Galstian T, Shi W. Chip-scale full-stokes spectropolarimeter in silicon photonic circuits. Photon Res. 2020;8:864–74.
|
[44] |
Zhou H, Zhao Y, Wei Y, Li F, Dong J, Zhang X. All-in-one silicon photonic polarization processor. Nanophotonics. 2019;8:2257–67.
|
[45] |
Noe R, Koch B, Mirvoda V, Hidayat A, Sandel D. 38-krad/s 3.8-Grad broadband endless optical polarization tracking using LiNbO3 device. IEEE Photon Technol Lett. 2019;21:1220–2.
|
[46] |
Koch B, Noé R, Sandel D, Mirvoda V. Versatile endless optical polarization controller/tracker/demultiplexer. Opt Express. 2014;22:8259–76.
|
[47] |
Ezra I, Alan P, Daniel J, Joseph M. Coherent detection in optical fiber systems. Opt Express. 2008;16:753–91.
|