留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Handling mode and polarization in fiber by fs-laser inscribed (de)multiplexer and silicon switch array

Kang Li Min Yang Chengkun Cai Xiaoping Cao Guofeng Yan Guangze Wu Yuanjian Wan Jian Wang

Kang Li, Min Yang, Chengkun Cai, Xiaoping Cao, Guofeng Yan, Guangze Wu, Yuanjian Wan, Jian Wang. Handling mode and polarization in fiber by fs-laser inscribed (de)multiplexer and silicon switch array[J]. PhotoniX. doi: 10.1186/s43074-023-00093-5
引用本文: Kang Li, Min Yang, Chengkun Cai, Xiaoping Cao, Guofeng Yan, Guangze Wu, Yuanjian Wan, Jian Wang. Handling mode and polarization in fiber by fs-laser inscribed (de)multiplexer and silicon switch array[J]. PhotoniX. doi: 10.1186/s43074-023-00093-5
Kang Li, Min Yang, Chengkun Cai, Xiaoping Cao, Guofeng Yan, Guangze Wu, Yuanjian Wan, Jian Wang. Handling mode and polarization in fiber by fs-laser inscribed (de)multiplexer and silicon switch array[J]. PhotoniX. doi: 10.1186/s43074-023-00093-5
Citation: Kang Li, Min Yang, Chengkun Cai, Xiaoping Cao, Guofeng Yan, Guangze Wu, Yuanjian Wan, Jian Wang. Handling mode and polarization in fiber by fs-laser inscribed (de)multiplexer and silicon switch array[J]. PhotoniX. doi: 10.1186/s43074-023-00093-5

Handling mode and polarization in fiber by fs-laser inscribed (de)multiplexer and silicon switch array

doi: 10.1186/s43074-023-00093-5

Handling mode and polarization in fiber by fs-laser inscribed (de)multiplexer and silicon switch array

Funds: We thank Xin Fu, Lei Zhang and Lin Yang from the State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, China for providing technical supports for the silicon switch array.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Namiki S, Hasama T, Ishikawa H. Optical signal processing for energy-efficient dynamic optical path networks. In: 36th European Conference and Exhibition on Optical Communication (ECOC). 2010. p. 1–6.
    [2] Willner A, Khaleghi S, Chitgarha M, Yilmaz O. All-optical signal processing. J Lightwave Technol. 2014;32:660–80.
    [3] Shacham A, Bergman K, Carloni L. Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans Comput. 2008;57:1246–60.
    [4] Yoo S. Optical packet and burst switching technologies for the future photonic internet. J Lightwave Technol. 2006;24:4468–92.
    [5] Zheng S, Long Y, Gao D, Luo Y, Wang J. Chip-scale reconfigurable optical full-field manipulation: enabling a compact grooming photonic signal processor. ACS Photonics. 2020;7:1235–45.
    [6] Cao X, Zheng S, Long Y, Ruan Z, Luo Y, Wang J. Mesh-structure-enabled programmable multitask photonic signal processor on a silicon chip. ACS Photonics. 2020;7:2658–75.
    [7] Wonfor A, Wang H, Penty R, White I. Large port count high-speed optical switch fabric for use within datacenters. J Opt Commun Netw. 2011;3:A32–9.
    [8] Cheng Q, Rumley S, Bahadori M, Bergman K. Photonic switching in high performance datacenters. Opt Express. 2018;26:16022–43.
    [9] Chen Q, Zhang F, Ji R, Zhang L, Yang L. Universal method for constructing N-port non-blocking optical router based on 2 × 2 optical switch for photonic networks-on-chip. Opt Express. 2014;22:12614–27.
    [10] Chen L, Chen Y. Compact, low-loss and low-power 8×8 broadband silicon optical switch. Opt Express. 2012;20:18977–85.
    [11] Dong P, Zhang L, Dai D, Shi Y. All-optical switching of silicon nanobeam cavities with an ultra-compact heater utilizing the photothermal effect. ACS Photonics. 2021;9:197–202.
    [12] Suzuki K, Tanizawa K, Matsukawa T, Cong G, Kim S, Suda S, Ohno M, Chiba T, Tadokoro H, Yanagihara M, Igarashi Y, Masahara M, Namiki S, Kawashima H. Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch. Opt Express. 2014;22:3887–94.
    [13] Kwack M, Tanemura T, Higo A, Nakano Y. Monolithic InP strictly non-blocking 8×8 switch for high-speed WDM optical interconnection. Opt Express. 2012;20:28734–41.
    [14] Takiguchi M, Takemura N, Tateno K, Nozaki K, Sasaki S, Sergent S, Kuramochi E, Wasawo T, Yokoo A, Shinya A, Notomi M. All-optical InAsP/InP nanowire switches integrated in a Si photonic crystal. ACS Photonics. 2020;7:1016–21.
    [15] Seok T, Quack N, Han S, Wu M. 50×50 Digital silicon photonic switches with MEMS-actuated adiabatic couplers. In: Optical Fiber Communication Conference (OFC). 2015. p. M2B.4.
    [16] Shi Y, Zhang Y, Wan Y, Yu Y, Zhang Y, Hu X, Xiao X, Xu H, Zhang L, Pan B. Silicon photonics for high-capacity data communications. Photonics Res. 2022;10:A106–34.
    [17] Shi W, Tian Y, Gervais A. Scaling capacity of fiber-optic transmission systems via silicon photonics. Nanophotonics. 2020;9:4629–63.
    [18] Winzer P, Neilson D, Chraplyvy A. Fiber-optic transmission and networking: the previous 20 and the next 20 years. Opt Express. 2018;26:24190–239.
    [19] Li X, Yu J, Zhang J, Li F, Xu Y, Zhang Z, Xiao J. Fiber-wireless-fiber link for 100-Gb/s PDM-QPSK signal transmission at W-Band. IEEE Photon Technol Lett. 2014;26:1825–8.
    [20] Richardson D, Fini J, Nelson L. Space-division multiplexing in optical fibres. Nat Photonics. 2013;7:354–62.
    [21] Mitra P, Stark J. Nonlinear limits to the information capacity of optical fibre communications. Nature. 2001;411:1027–30.
    [22] Wang J, Yang J, Fazal I, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner A. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photonics. 2012;6:488–96.
    [23] van Uden R, Correa R, Lopez E, Huijskens F, Xia C, Li G, Schülzgen A, Waardt H, Koonen A, Okonkwo C. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat Photonics. 2014;8:865–70.
    [24] Stuart H. Dispersive multiplexing in multimode optical fiber. Science. 2000;289:281–3.
    [25] Rademacher G, Puttnam B, Luís R, Eriksson T, Fontaine N, Mazur M, Chen H, Ryf R, Neilson D, Sillard P, Achten F, Awaji Y, Furukawa H. Peta-bit-per-second optical communications system using a standard cladding diameter 15-mode fiber. Nat Commun. 2021;12:4238.
    [26] Winzer P. Making spatial multiplexing a reality. Nat Photonics. 2014;8:345–8.
    [27] Kawaguchi Y, Tsutsumi K. Mode multiplexing and demultiplexing devices using multimode interference couplers. Electron Lett. 2002;38:1.
    [28] Zhang L, Lu D, Li Z, Pan B, Zhao L. C-band fundamental/first-order mode converter based on multimode interference coupler on InP substrate. J Semicond. 2016;37:124005.
    [29] Uematsu T, Ishizaka Y, Kawaguchi Y, Saitoh K, Koshiba M. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission. J Lightwave Technol. 2012;30:2421.
    [30] Riesen N, Love J. Design of mode-sorting asymmetric Y-junctions. Appl Opt. 2012;51:2778.
    [31] Chen W, Wang P, Yang J. Mode multi/demultiplexer based on cascaded asymmetric Y-junctions. Opt Express. 2013;21:25113.
    [32] Xing J, Li Z, Xiao X, Yu J, Yu Y. Two-mode multiplexer and demultiplexer based on adiabatic couplers. Opt Lett. 2013;38:3468.
    [33] Wang J, He S, Dai D. On-chip silicon 8-channel hybrid (de) multiplexer enabling simultaneous mode-and polarization-division-multiplexing. Laser Photon Rev. 2014;8:L18.
    [34] Li K, Cao X, Wan Y, Wu G, Wang J. Fundamental analyses of fabrication-tolerant high-performance silicon mode (de)multiplexer. Opt Express. 2022;30:22649–60.
    [35] Ren F, Li J, Hu T, Tang R, Yu J, Mo Q, He Y, Chen Z, Li Z. Cascaded mode-division-multiplexing and time-division-multiplexing passive optical network based on low mode-crosstalk FMF and mode MUX/DEMUX. IEEE Photonics J. 2015;7:1.
    [36] Leon-Saval S, Argyros A, Bland-Hawthorn J. Photonic lanterns: a study of light propagation in multimode to single-mode converters. Opt Express. 2010;18:8430.
    [37] Tong Y, Zhou W, Wu X, Tsang H. Efficient mode multiplexer for few-mode fibers using integrated silicon-on-insulator waveguide grating coupler. IEEE J Quantum Electron. 2019;56:1.
    [38] Zhang Z, Tong Y, Wang Y, Tsang H. Nonparaxial mode-size converter using an ultracompact metamaterial Mikaelian lens. J Lightwave Technol. 2020;39:2077.
    [39] Zheng D, Doménech J, Pan W, Zou X, Yan L, Pérez D. Low-loss broadband 5 × 5 non-blocking Si3N4 optical switch matrix. Opt Lett. 2019;44:2629–32.
    [40] Xing J, Li Z, Zhou P, Xiao X, Yu J, Yu Y. Nonblocking 4×4 silicon electro-optic switch matrix with push–pull drive. Opt Lett. 2013;38:3926–9.
    [41] Wang T, Wang T, Lan S, Jiang J, Liu T. A novel method of polarization state control for polarization division multiplexing system. Chin Opt Lett. 2008;6(6):812–4.
    [42] Yang Y, Geng C, Li F, Huang G, Li X. Coherent polarization beam combining approach based on polarization controlling in fiber devices. IEEE Photon Technol Lett. 2017;29:945–8.
    [43] Lin Z, Dadalyan T, Villers S, Galstian T, Shi W. Chip-scale full-stokes spectropolarimeter in silicon photonic circuits. Photon Res. 2020;8:864–74.
    [44] Zhou H, Zhao Y, Wei Y, Li F, Dong J, Zhang X. All-in-one silicon photonic polarization processor. Nanophotonics. 2019;8:2257–67.
    [45] Noe R, Koch B, Mirvoda V, Hidayat A, Sandel D. 38-krad/s 3.8-Grad broadband endless optical polarization tracking using LiNbO3 device. IEEE Photon Technol Lett. 2019;21:1220–2.
    [46] Koch B, Noé R, Sandel D, Mirvoda V. Versatile endless optical polarization controller/tracker/demultiplexer. Opt Express. 2014;22:8259–76.
    [47] Ezra I, Alan P, Daniel J, Joseph M. Coherent detection in optical fiber systems. Opt Express. 2008;16:753–91.
  • 加载中
图(1)
计量
  • 文章访问数:  77
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-13
  • 录用日期:  2023-04-23
  • 修回日期:  2023-03-10
  • 网络出版日期:  2023-05-02

目录

    /

    返回文章
    返回