留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Naked-eye observation of water-forming reaction on palladium etalon: transduction of gas-matter reaction into light-matter interaction

Naked-eye observation of water-forming reaction on palladium etalon: transduction of gas-matter reaction into light-matter interaction[J]. PhotoniX. doi: 10.1186/s43074-023-00097-1
引用本文: Naked-eye observation of water-forming reaction on palladium etalon: transduction of gas-matter reaction into light-matter interaction[J]. PhotoniX. doi: 10.1186/s43074-023-00097-1
Jongsu Lee, Eui-Sang Yu, Taehyun Kim, In Soo Kim, Seok Chung, Seung Jae Kwak, Won Bo Lee, Yusin Pak, Yong-Sang Ryu. Naked-eye observation of water-forming reaction on palladium etalon: transduction of gas-matter reaction into light-matter interaction[J]. PhotoniX. doi: 10.1186/s43074-023-00097-1
Citation: Jongsu Lee, Eui-Sang Yu, Taehyun Kim, In Soo Kim, Seok Chung, Seung Jae Kwak, Won Bo Lee, Yusin Pak, Yong-Sang Ryu. Naked-eye observation of water-forming reaction on palladium etalon: transduction of gas-matter reaction into light-matter interaction[J]. PhotoniX. doi: 10.1186/s43074-023-00097-1

Naked-eye observation of water-forming reaction on palladium etalon: transduction of gas-matter reaction into light-matter interaction

doi: 10.1186/s43074-023-00097-1

Naked-eye observation of water-forming reaction on palladium etalon: transduction of gas-matter reaction into light-matter interaction

Funds: We acknowledge support from Prof. Sin-Doo Lee (Department of Electrical and Computer Engineering, Seoul National University) for his scientific counsel and advice that improves the depth of our work.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Tang L, Li J. Plasmon-based colorimetric nanosensors for ultrasensitive molecular diagnostics. ACS Sens. 2017;2(7):857–75. https://doi.org/10.1021/acssensors.7b00282.
    [2] Ajay Piriya VS, Joseph P, Kiruba Daniel SCG, Lakshmanan S, Kinoshita T, Muthusamy S. Colorimetric sensors for rapid detection of various analytes. Mater Sci Eng C. 2017;78:1231–45. https://doi.org/10.1016/j.msec.2017.05.018.
    [3] Aldewachi H, Chalati T, Woodroofe M, Bricklebank N, Sharrack B, Gardiner P. Gold nanoparticle-based colorimetric biosensors. Nanoscale. 2018;10(1):18–33. https://doi.org/10.1039/C7NR06367A.
    [4] Liu B, Zhuang J, Wei G. Recent advances in the design of colorimetric sensors for environmental monitoring. Environ Sci Nano. 2020;7(8):2195–213. https://doi.org/10.1039/D0EN00449A.
    [5] Nguyen QH, Kim MI. Using nanomaterials in colorimetric toxin detection. Biochip J. 2021;15(2):123–34. https://doi.org/10.1007/s13206-021-00013-4.
    [6] Shu FZ, Yu FF, Peng RW, Zhu YY, Xiong B, Fan RH, et al. Dynamic plasmonic color generation based on phase transition of vanadium dioxide. Adv Opt Mater. 2018;6(7):1700939. https://doi.org/10.1002/adom.201700939.
    [7] Fudouzi H, Sawada T. Photonic rubber sheets with tunable color by elastic deformation. Langmuir. 2006;22(3):1365–8. https://doi.org/10.1021/la0521037.
    [8] Jung C, Kim S-J, Jang J, Ko JH, Kim D, Ko B, et al. Disordered-nanoparticle-based etalon for ultrafast humidity-responsive colorimetric sensors and anti-counterfeiting displays. Sci Adv. 2022;8(10):598. https://doi.org/10.1126/sciadv.abm8598.
    [9] de la Rica R, Stevens MM. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat Nanotechnol. 2012;7(12):821–4. https://doi.org/10.1038/nnano.2012.186.
    [10] Duan X, Liu N. Scanning plasmonic color display. ACS Nano. 2018;12(8):8817–23. https://doi.org/10.1021/acsnano.8b05467.
    [11] Andringa AM, Meijboom JR, Smits EC, Mathijssen SG, Blom PW, de Leeuw DM. Gate‐bias controlled charge trapping as a mechanism for NO2 detection with field‐effect transistors. Adv Funct Mater. 2011;21:100–7.
    [12] Georg A, Georg A, Graf W, Wittwer V. Switchable windows with tungsten oxide. Vacuum. 2008;82(7):730–5. https://doi.org/10.1016/j.vacuum.2007.10.020.
    [13] Huiberts J, Griessen R, Rector J, Wijngaarden R, Dekker J, de Groot D, et al. Yttrium and lanthanum hydride films with switchable optical properties. Nature. 1996;380(6571):231–4. https://doi.org/10.1038/380231a0.
    [14] Palm KJ, Murray JB, Narayan TC, Munday JN. Dynamic optical properties of metal hydrides. ACS Photonics. 2018;5(11):4677–86. https://doi.org/10.1021/acsphotonics.8b01243.
    [15] Nørskov JK, Abild-Pedersen F, Studt F, Bligaard T. Density functional theory in surface chemistry and catalysis. Proc Natl Acad Sci. 2011;108(3):937–43. https://doi.org/10.1073/pnas.1006652108.
    [16] Rotermund H, Ertl G, Sesselmann W. Scanning photoemission microscopy of surfaces. Surf Sci. 1989;217(3):L383–90. https://doi.org/10.1016/0039-6028(89)90428-7.
    [17] Telieps W, Bauer E. An analytical reflection and emission UHV surface electron microscope. Ultramicroscopy. 1985;17(1):57–65. https://doi.org/10.1016/0304-3991(85)90177-9.
    [18] Dicke J, Rotermund H, Lauterbach J. Ellipsomicroscopy for surface imaging: contrast mechanism, enhancement, and application to CO oxidation on Pt (110). J Opt Soc Am A. 2000;17(1):135–41. https://doi.org/10.1364/JOSAA.17.000135.
    [19] Dicke J, Erichsen P, Wolff J, Rotermund H. Reflection anisotropy microscopy: improved set-up and applications to CO oxidation on platinum. Surf Sci. 2000;462(1–3):90–102. https://doi.org/10.1016/S0039-6028(00)00571-9.
    [20] Yuan W, Zhu B, Li X, Hansen TW, Ou Y, Fang K, et al. Visualizing H2O molecules reacting at TiO2 active sites with transmission electron microscopy. Science. 2020;367(6476):428–30. https://doi.org/10.1126/science.aay2474.
    [21] Dannetun HM, Söderberg D, Lundström I, Petersson L. The H2–O2 reaction on palladium studied over a large pressure range: Independence of the microscopic sticking coefficients on surface condition. Surf Sci. 1985;152:559–68. https://doi.org/10.1016/0039-6028(85)90188-8.
    [22] Petersson L, Dannetun HM, Lundström I. The water-forming reaction on palladium. Surf Sci. 1985;161(1):77–100. https://doi.org/10.1016/0039-6028(85)90729-0.
    [23] Petersson L, Dannetun HM, Lundström I. Water production on palladium in hydrogen-oxygen atmospheres. Surf Sci. 1985;163(1):273–84. https://doi.org/10.1016/0039-6028(85)90864-7.
    [24] Roques J, Lacaze-Dufaure C, Mijoule C. Dissociative adsorption of hydrogen and oxygen on palladium clusters: a comparison with the (111) infinite surface. J Chem Theory Comput. 2007;3(3):878–84. https://doi.org/10.1021/ct600370g.
    [25] El-Okazy MA, Liu L, Junk CP, Kathmann E, White W, Kentish SE. Gas separation performance of copolymers of perfluoro (butenyl vinyl ether) and perfluoro (2, 2-dimethyl-1, 3-dioxole). J Membr Sci. 2021;634:119401. https://doi.org/10.1016/j.memsci.2021.119401.
    [26] Kim KR, Noh J, Lee JM, Kim YJ, Lee W. Suppression of phase transitions in Pd thin films by insertion of a Ti buffer layer. J Mater Sci. 2011;46(6):1597–601. https://doi.org/10.1007/s10853-010-4970-x.
    [27] Nyberg C, Tengstål C. Adsorption and reaction of water, oxygen, and hydrogen on Pd (100): identification of adsorbed hydroxyl and implications for the catalytic H2–O2 reaction. J Chem Phys. 1984;80(7):3463–8. https://doi.org/10.1063/1.447102.
    [28] Ryu Y, Yoo D, Wittenberg NJ, Jordan LR, Lee S-D, Parikh AN, et al. Lipid membrane deformation accompanied by disk-to-ring shape transition of cholesterol-rich domains. J Am Chem Soc. 2015;137(27):8692–5. https://doi.org/10.1021/jacs.5b04559.
    [29] Vaughan JM. The Fabry-Perot interferometer: history, theory, practice and applications. Oxford: Routledge; 2017.
    [30] Yu E, Lee SH, Bae YG, Choi J, Lee D, Kim C, et al. Highly sensitive color tunablility by scalable nanomorphology of a dielectric layer in liquid-permeable metal-insulator-metal structure. ACS Appl Mater Interfaces. 2018;10(44):38581–7. https://doi.org/10.1021/acsami.8b12553.
    [31] Jeong H, Lee J, Yu E, Kim T, Kim IS, Lee S, et al. Physicochemical modulation of nanometer-thick etalon films for liquid-sensitive color display with full-color spectrum generation. ACS Appl Nano Mater. 2020;4(1):389–95. https://doi.org/10.1021/acsanm.0c02746.
    [32] Kim T, Yu E, Bae Y, Lee J, Kim IS, Chung S, et al. Asymmetric optical camouflage: tuneable reflective colour accompanied by the optical Janus effect. Light Sci Appl. 2020;9(1):1–10. https://doi.org/10.1038/s41377-020-00413-5.
    [33] Yu E, Chae K, Kim T, Lee J, Seo J, Kim IS, et al. Development of a photonic switch via electro-capillarity-induced water penetration across a 10-nm gap. Small. 2022;18:2107060. https://doi.org/10.1002/smll.202107060.
    [34] Seal K, Genov D, Sarychev A, Noh H, Shalaev VM, Ying Z, et al. Coexistence of localized and delocalized surface plasmon modes in percolation metal films. Phy Rev Lett. 2006;97(20):206103. https://doi.org/10.1103/PhysRevLett.97.206103.
    [35] Maaroof A, Sutherland D. Optimum plasmon hybridization at percolation threshold of silver films near metallic surfaces. J Phys D Appl Phys. 2010;43(40):405301. https://doi.org/10.1088/0022-3727/43/40/405301.
    [36] Sharma G, Bala R. Digital color imaging handbook. Boca Raton: CRC Press; 2017.
    [37] Ngene P, Radeva T, Slaman M, Westerwaal RJ, Schreuders H, Dam B. Seeing hydrogen in colors: low-cost and highly sensitive eye readable hydrogen detectors. Adv Funct Mater. 2014;24(16):2374–82. https://doi.org/10.1002/adfm.201303065.
    [38] Johnson NJJ, Lam B, MacLeod BP, Sherbo RS, Moreno-Gonzalez M, Fork DK, et al. Facets and vertices regulate hydrogen uptake and release in palladium nanocrystals. Nat Mater. 2019;18(5):454–8. https://doi.org/10.1038/s41563-019-0308-5.
    [39] Namba K, Ogura S, Ohno S, Di W, Kato K, Wilde M, et al. Acceleration of hydrogen absorption by palladium through surface alloying with gold. Proc Natl Acad Sci. 2018;115(31):7896–900. https://doi.org/10.1073/pnas.1800412115.
    [40] Langmuir I. The constitution and fundamental properties of solids and liquids. II Liquids J Am Chem Soc. 1917;39(9):1848–906. https://doi.org/10.1021/ja02254a006.
    [41] Neubrech F, Duan X, Liu N. Dynamic plasmonic color generation enabled by functional materials. Sci Adv. 2020;6(36):eabc2709. https://doi.org/10.1126/sciadv.abc2709.
    [42] Baldi A, Narayan TC, Koh AL, Dionne JA. In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. Nat Mater. 2014;13(12):1143–8. https://doi.org/10.1038/nmat4086.
    [43] Zhang T, Ling C, Xue Q, Wu T. The effect of oxygen molecule on the hydrogen storage process of Li-doped graphene. Chem Phys Lett. 2014;599:100–3. https://doi.org/10.1016/j.cplett.2014.03.035.
    [44] Prieto MJ, Klemm HW, Xiong F, Gottlob DM, Menzel D, Schmidt T, et al. Water formation under silica thin films: real-time observation of a chemical reaction in a physically confined space. Angew Chem Int Ed. 2018;57(28):8749–53. https://doi.org/10.1002/anie.201802000.
    [45] Hashtroudi H, Kumar R, Savu R, Moshkalev S, Kawamura G, Matsuda A, et al. Hydrogen gas sensing properties of microwave-assisted 2D Hybrid Pd/rGO: Effect of temperature, humidity and UV illumination. Int J Hydrog Energy. 2021;46(10):7653–65. https://doi.org/10.1016/j.ijhydene.2020.11.268.
    [46] Petersson L, Dannetun HM, Lundström I. Hydrogen detection during catalytic surface reactions: evidence for activated lateral hydrogen mobility in the water-forming reaction on Pd. Phys Rev Lett. 1984;52(20):1806–9. https://doi.org/10.1103/PhysRevLett.52.1806.
    [47] Duan X, Kamin S, Liu N. Dynamic plasmonic colour display. Nat Commun. 2017;8(1):1–9. https://doi.org/10.1038/ncomms14606.
    [48] Syrenova S, Wadell C, Langhammer C. Shrinking-hole colloidal lithography: self-aligned nanofabrication of complex plamonic nanoantennas. Nano Lett. 2014;14(5):2655–63. https://doi.org/10.1021/nl500514y.
    [49] Yang A, Huntington MD, Cardinal MF, Masango SS, Van Duyne RP, Odom TW. Hetero-oligomer nanoaparticle arrays for plasmon-enhanced hydrogen sensing. ACS Nano. 2014;8(8):7639–47. https://doi.org/10.1021/nn502502r.
  • 加载中
图(1)
计量
  • 文章访问数:  216
  • HTML全文浏览量:  4
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-05
  • 录用日期:  2023-05-30
  • 修回日期:  2023-05-02
  • 网络出版日期:  2023-06-26

目录

    /

    返回文章
    返回