留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent application of Raman spectroscopy in tumor diagnosis: from conventional methods to artifcial intelligence fusion

Recent application of Raman spectroscopy in tumor diagnosis: from conventional methods to artifcial intelligence fusion[J]. PhotoniX. doi: 10.1186/s43074-023-00098-0
引用本文: Recent application of Raman spectroscopy in tumor diagnosis: from conventional methods to artifcial intelligence fusion[J]. PhotoniX. doi: 10.1186/s43074-023-00098-0
Yafeng Qi, Yuhong Liu, Jianbin Luo. Recent application of Raman spectroscopy in tumor diagnosis: from conventional methods to artifcial intelligence fusion[J]. PhotoniX. doi: 10.1186/s43074-023-00098-0
Citation: Yafeng Qi, Yuhong Liu, Jianbin Luo. Recent application of Raman spectroscopy in tumor diagnosis: from conventional methods to artifcial intelligence fusion[J]. PhotoniX. doi: 10.1186/s43074-023-00098-0

Recent application of Raman spectroscopy in tumor diagnosis: from conventional methods to artifcial intelligence fusion

doi: 10.1186/s43074-023-00098-0

Recent application of Raman spectroscopy in tumor diagnosis: from conventional methods to artifcial intelligence fusion

Funds: Y. Q. would like to thank Dr. Jianpeng Ao (Fudan University, China) for Raman figures.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA-Cancer J Clin. 2021;71(3):209–49.
    [2] Inamura K, Ishikawa Y. MicroRNA in lung cancer: Novel biomarkers and potential tools for treatment. J Clin Med. 2016;5:36.
    [3] Luo X, Liu J, Wang H, Lu H. Metabolomics identified new biomarkers for the precise diagnosis of pancreatic cancer and associated tissue metastasis. Pharmacol Res. 2020;156: 104805.
    [4] Huang Q, Ouyang X. Predictive biochemical-markers for the development of brain metastases from lung cancer: Clinical evidence and future directions. Cancer Epidemiol. 2013;37(5):703–7.
    [5] Vansteenkiste J, Fischer BM, Dooms C, Mortensen J. Positron-emission tomography in prognostic and therapeutic assessment of lung cancer: Systematic review. Lancet Oncol. 2004;5(9):531–40.
    [6] Lian C, Ruan S, Denœux T, Jardin F, Vera P. Selecting radiomic features from FDG-PET images for cancer treatment outcome prediction. Med Image Anal. 2016;32:257–68.
    [7] Reboucas PP, Cortez PC, Barros ACD, Albuquerque VHC, Tavares JMRS. Novel and powerful 3D adaptive crisp active contour method applied in the segmentation of CT lung images. Med Image Anal. 2017;35:503–16.
    [8] Gal AA. In search of the origins of modern surgical pathology. Adv Anat Pathol. 2001;8(1):1–13.
    [9] Gutmann EJ. Pathologists and patients: Can we talk? Mod Pathol. 2003;16(5):515–8.
    [10] Lechago J. The frozen section - Pathology in the trenches. Arch Pathol Lab Med. 2005;129(12):1529–31.
    [11] Gal AA, Cagle PT. The 100-year anniversary of the description of the frozen section procedure. JAMA-J Am Med Assoc. 2005;294(24):3135–7.
    [12] Qi YF, Liu YH, Liu DM. Research progress on application of Raman spectroscopy in tumor diagnosis. Laser Optoelectron Prog. 2020;57(22): 220001.
    [13] Movasaghi Z, Rehman S, Rehman IU. Raman spectroscopy of biological tissues. Appl Spectrosc Rev. 2007;42(5):493–541.
    [14] Hollon T, Orringer DA. Label-free brain tumor imaging using Raman-based methods. J Neuro-Oncol. 2021;151(3):393–402.
    [15] Butler HJ, Ashton L, Bird B, Cinque G, Curtis K, Dorney J, Esmonde-White K, Fullwood NJ, Gardner B, Martin-Hirsch PL, Walsh MJ, McAinsh MR, Stone N, Martin FL. Using Raman spectroscopy to characterize biological materials. Nat Protoc. 2016;11(4):664–87.
    [16] Ralbovsky NM, Lednev IK. Towards development of a novel universal medical diagnostic method: Raman spectroscopy and machine learning. Chem Soc Rev. 2020;49(20):7428–53.
    [17] Chase B. A new-generation of Raman instrumentation. Appl Spectrosc. 1994;48(7):A14–9.
    [18] Zhou J, Pan W, Qi W, Cao X, Cheng Z, Feng Y. Ultrafast Raman fiber laser: A review and prospect. PhotoniX. 2022;3:18.
    [19] Ye J, Ma X, Zhang Y, Xu J, Zhang H, Yao T, Leng J, Zhou P. From spectral broadening to recompression: Dynamics of incoherent optical waves propagating in the fiber. PhotoniX. 2021;2:15.
    [20] Lin T, Song Y-L, Kuang P, Chen S, Mao Z, Zeng T-T. Nanostructure-based surface-enhanced Raman scattering for diagnosis of cancer. Nanomedicine. 2021;16(26):2389–406.
    [21] Li L, Yang J, Wei J, Jiang C, Liu Z, Yang B, Zhao B, Song W. SERS monitoring of photoinduced-enhanced oxidative stress amplifier on Au@carbon dots for tumor catalytic therapy. Light Sci Appl. 2022;11(1):286.
    [22] Wang H-L, You E-M, Panneerselvam R, Ding S-Y, Tian Z-Q. Advances of surface-enhanced Raman and IR spectroscopies: from nano/microstructures to macro-optical design. Light Sci Appl. 2021;10(1):161.
    [23] Ding SY, You EM, Tian ZQ, Moskovits M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem Soc Rev. 2017;46(13):4042–76.
    [24] Yang W, Knorr F, Latka I, Vogt M, Hofmann GO, Popp J, Schie IW. Real-time molecular imaging of near-surface tissue using Raman spectroscopy. Light Sci Appl. 2022;11(1):90.
    [25] Ilchenko O, Pilhun Y, Kutsyk A. Towards Raman imaging of centimeter scale tissue areas for real-time opto-molecular visualization of tissue boundaries for clinical applications. Light Sci Appl. 2022;11(1):143.
    [26] Ao J, Feng Y, Wu S, Wang T, Ling J, Zhang L, Ji M. Rapid, 3D chemical profiling of individual atmospheric aerosols with stimulated Raman scattering microscopy. Small Methods. 2019;4(2):1900600.
    [27] Ao J, Fang X, Miao X, Ling J, Kang H, Park S, Wu C, Ji M. Switchable stimulated Raman scattering microscopy with photochromic vibrational probes. Nat Commun. 2021;12(1):3089.
    [28] Kong CH, Pilger C, Hachmeister H, Wei XM, Cheung TH, Lai CSW, Lee NP, Tsia KK, Wong KKY, Huser T. High-contrast, fast chemical imaging by coherent Raman scattering using a self-synchronized two-colour fibre laser. Light Sci Appl. 2020;9:25.
    [29] Li J, Zhang MJ. Physics and applications of Raman distributed optical fiber sensing. Light Sci Appl. 2022;11:128.
    [30] Wang T, Jiang J, Liu K, Wang S, Niu P, Liu Y, Liu T. Flexible minimally invasive coherent anti-Stokes Raman spectroscopy (CARS) measurement method with tapered optical fiber probe for single-cell application. PhotoniX. 2022;3:11.
    [31] Hollon TC, Pandian B, Adapa AR, Urias E, Save AV, Khalsa SSS, Eichberg DG, D’Amico RS, Farooq ZU, Lewis S, Petridis PD, Marie T, Shah AH, Garton HJL, Maher CO, Heth JA, McKean EL, Sullivan SE, Hervey-Jumper SL, Patil PG, Thompson BG, Sagher O, McKhann GM, Komotar RJ 2nd, Ivan ME, Snuderl M, Otten ML, Johnson TD, Sisti MB, Bruce JN, Muraszko KM, Trautman J, Freudiger CW, Canoll P, Lee H, Camelo-Piragua S, Orringer DA. Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks. Nat Med. 2020;26(1):52–8.
    [32] He H, Yan S, Lyu D, Xu M, Ye R, Zheng P, Lu X, Wang L, Ren B. Deep learning for biospectroscopy and biospectral imaging: State-of-the-art and perspectives. Anal Chem. 2021;93(8):3653–65.
    [33] Aguiar RP, Falcao ET, Pasqualucci CA, Silveira L Jr. Use of Raman spectroscopy to evaluate the biochemical composition of normal and tumoral human brain tissues for diagnosis. Lasers Med Sci. 2022;37(1):121–33.
    [34] Kaushik R, Rani C, Neeshu K, Tanwar M, Pathak DK, Chaudhary A, Siraj F, Jha HC, Kumar R. Brain tumour detection and grading using Raman scattering: Analogy from semiconductors for solving biological problem. Adv Mater Process Technol. 2020;8(1):703–14.
    [35] Kopec M, Blaszczyk M, Radek M, Abramczyk H. Raman imaging and statistical methods for analysis various type of human brain tumors and breast cancers. Spectroc Acta Pt A-Molec Biomolec Spectr. 2021;262: 120091.
    [36] Livermore LJ, Isabelle M, Bell IM, Edgar O, Voets NL, Stacey R, Ansorge O, Vallance C, Plaha P. Raman spectroscopy to differentiate between fresh tissue samples of glioma and normal brain: A comparison with 5-ALA-induced fluorescence-guided surgery. J Neurosurg. 2021;132(2):469–79.
    [37] Depciuch J, Tolpa B, Witek P, Szmuc K, Kaznowska E, Osuchowski M, Krol P, Cebulski J. Raman and FTIR spectroscopy in determining the chemical changes in healthy brain tissues and glioblastoma tumor tissues. Spectroc Acta Pt A-Molec Biomolec Spectr. 2020;225: 117526.
    [38] Iturrioz-Rodriguez N, De Pasquale D, Fiaschi P, Ciofani G. Discrimination of glioma patient-derived cells from healthy astrocytes by exploiting Raman spectroscopy. Spectroc Acta Pt A-Molec Biomolec Spectr. 2022;269: 120773.
    [39] Lilo T, Morais CLM, Ashton KM, Davis C, Dawson TP, Martin FL, Alder J, Roberts G, Ray A, Gurusinghe N. Raman hyperspectral imaging coupled to three-dimensional discriminant analysis: Classification of meningiomas brain tumour grades. Spectroc Acta Pt A-Molec Biomolec Spectr. 2022;273: 121018.
    [40] Zhang C, Han Y, Sun B, Zhang W, Liu S, Liu J, Lv H, Zhang G, Kang X. Label-free serum detection based on Raman spectroscopy for the diagnosis and classification of glioma. J Raman Spectrosc. 2020;51(10):1977–85.
    [41] Ning T, Li H, Chen Y, Zhang B, Zhang F, Wang S. Raman spectroscopy based pathological analysis and discrimination of formalin fixed paraffin embedded breast cancer tissue. Vib Spectrosc. 2021;115: 103260.
    [42] Li H, Ning T, Yu F, Chen Y, Zhang B, Wang S. Raman microspectroscopic investigation and classification of breast cancer pathological characteristics. Molecules. 2021;26(4):921.
    [43] Wang S, Li H, Ren Y, Yu F, Song D, Zhu L, Yu S, Jiang S, Zeng H. Studying the pathological and biochemical features in breast cancer progression by confocal Raman microspectral imaging of excised tissue samples. J Photochem Photobiol B-Biol. 2021;222: 112280.
    [44] Wen X, Ou Y-C, Bogatcheva G, Thomas G, Mahadevan-Jansen A, Singh B, Lin EC, Bardhan R. Probing metabolic alterations in breast cancer in response to molecular inhibitors with Raman spectroscopy and validated with mass spectrometry. Chem Sci. 2020;11(36):9863–74.
    [45] Maitra I, Morais CLM, Lima KMG, Ashton KM, Date RS, Martin FL. Raman spectral discrimination in human liquid biopsies of oesophageal transformation to adenocarcinoma. J Biophotonics. 2020;13(3): e201960132.
    [46] Liang H, Cheng X, Dong S, Wang H, Liu E, Ru Y, Li Y, Kong X, Gao Y. Rapid and non-invasive discrimination of acute leukemia bone marrow supernatants by Raman spectroscopy and multivariate statistical analysis. J Pharm Biomed Anal. 2022;210: 114560.
    [47] Kirchberger-Tolstik T, Ryabchykov O, Bocklitz T, Dirsch O, Settmacher U, Popp J, Stallmach A. Nondestructive molecular imaging by Raman spectroscopy vs. marker detection by MALDI IMS for an early diagnosis of HCC. Analyst. 2021;146(4):1239–52.
    [48] Song D, Chen T, Wang S, Chen S, Li H, Yu F, Zhang J, Zhang Z. Study on the biochemical mechanisms of the micro-wave ablation treatment of lung cancer by ex vivo confocal Raman microspectral imaging. Analyst. 2020;145(2):626–35.
    [49] Yang X, Wu Z, Ou Q, Qian K, Jiang L, Yang W, Shi Y, Liu G. Diagnosis of lung cancer by FTIR spectroscopy combined with Raman spectroscopy based on data fusion and wavelet transform. Front Chem. 2022;10: 810837.
    [50] Song D, Yu F, Chen S, Chen Y, He Q, Zhang Z, Zhang J, Wang S. Raman spectroscopy combined with multivariate analysis to study the biochemical mechanism of lung cancer microwave ablation. Biomed Opt Express. 2020;11(2):1061–72.
    [51] Sharma M, Jeng M-J, Young C-K, Huang S-F, Chang L-B. Developing an algorithm for discriminating oral cancerous and normal tissues using Raman spectroscopy. J Pers Med. 2021;11(11):1165.
    [52] Falamas A, Faur CI, Baciut M, Rotaru H, Chirila M, Cinta Pinzaru S, Hedesiu M. Raman spectroscopic characterization of saliva for the discrimination of oral squamous cell carcinoma. Anal Lett. 2021;54(1–2):57–69.
    [53] Fan L, Wang H, Wu X, Wang S, Han Y, Wang J. Raman spectroscopic study of benign and malignant ovarian tissues. Laser Phys. 2022;32(3): 035601.
    [54] Paluszkiewicz C, Roman M, Piergies N, Pieta E, Wozniak M, Guidi MC, Miskiewicz-Orczyk K, Markow M, Scierski W, Misiolek M, Drozdzowska B, Kwiatek WM. Tracking of the biochemical changes upon pleomorphic adenoma progression using vibrational microspectroscopy. Sci Rep. 2021;11(1):18010.
    [55] Kirkby CJ, de Pablo JG, Tinkler-Hundal E, Wood HM, Evans SD, West NP. Developing a Raman spectroscopy-based tool to stratify patient response to pre-operative radiotherapy in rectal cancer. Analyst. 2021;146(2):581–9.
    [56] Ruiz JJ, Marro M, Galvan I, Bernabeu-Wittel J, Conejo-Mir J, Zulueta-Dorado T, Guisado-Gil AB, Loza-Alvarez P. Novel non-invasive quantification and imaging of eumelanin and DHICA subunit in skin lesions by Raman spectroscopy and MCR algorithm: Improving dysplastic nevi diagnosis. Cancers. 2022;14(4):1056.
    [57] Silveira L Jr, Pasqualucci CA, Bodanese B, Tavares Pacheco MT, Zangaro RA. Normal-subtracted preprocessing of Raman spectra aiming to discriminate skin actinic keratosis and neoplasias from benign lesions and normal skin tissues. Lasers Med Sci. 2020;35(5):1141–51.
    [58] Zhang W, Karagiannidis I, Van Vliet ED, Yao RX, Beswick EJ, Zhou AH. Granulocyte colony-stimulating factor promotes an aggressive phenotype of colon and breast cancer cells with biochemical changes investigated by single-cell Raman microspectroscopy and machine learning analysis. Analyst. 2021;146(20):6124–31.
    [59] Beton K, Brozek-Pluska B. Vitamin C-protective role in oxidative stress conditions induced in human normal colon cells by label-free Raman spectroscopy and imaging. Int J Mol Sci. 2021;22(13):6928.
    [60] Iwasaki Y, Kawagishi M, Takase H, Ohno-Matsui K. Discrimination of dissociated lymphoma cells from leukocytes by Raman spectroscopy. Sci Rep. 2020;10(1):15778.
    [61] Sciortino T, Secoli R, d’Amico E, Moccia S, Conti Nibali M, Gay L, Rossi M, Pecco N, Castellano A, De Momi E, Fernandes B, Riva M, Bello L. Raman spectroscopy and machine learning for IDH genotyping of unprocessed glioma biopsies. Cancers. 2021;13(16):4196.
    [62] Riva M, Sciortino T, Secoli R, D’Amico E, Moccia S, Fernandes B, Conti Nibali M, Gay L, Rossi M, De Momi E, Bello L. Glioma biopsies classification using Raman spectroscopy and machine learning models on fresh tissue samples. Cancers. 2021;13(5):1073.
    [63] Zhang L, Li C, Peng D, Yi X, He S, Liu F, Zheng X, Huang WE, Zhao L, Huang X. Raman spectroscopy and machine learning for the classification of breast cancers. Spectroc Acta Pt A-Molec Biomolec Spectr. 2022;264: 120300.
    [64] Zhang H, Chen C, Ma C, Chen C, Zhu Z, Yang B, Chen F, Jia D, Li Y, Lv X. Feature fusion combined with Raman spectroscopy for early diagnosis of cervical cancer. IEEE Photonics J. 2021;13(3):3900311.
    [65] He C, Zhu S, Wu X, Zhou J, Chen Y, Qian X, Ye J. Accurate tumor subtype detection with Raman spectroscopy via variational autoencoder and machine learning. ACS Omega. 2022;7(12):10458–68.
    [66] He C, Wu X, Zhou J, Chen Y, Ye J. Raman optical identification of renal cell carcinoma via machine learning. Spectroc Acta Pt A-Molec Biomolec Spectr. 2021;252: 119520.
    [67] Jelke F, Mirizzi G, Borgmann FK, Husch A, Slimani R, Klamminger GG, Klein K, Mombaerts L, Gerardy J-J, Mittelbronn M, Hertel F. Intraoperative discrimination of native meningioma and dura mater by Raman spectroscopy. Sci Rep. 2021;11(1):23583.
    [68] Lau CPY, Ma W, Law KY, Lacambra MD, Wong KC, Lee CW, Lee OK, Dou Q, Kumta SM. Development of deep learning algorithms to discriminate giant cell tumors of bone from adjacent normal tissues by confocal Raman spectroscopy. Analyst. 2022;147(7):1425–39.
    [69] Huang X, Song D, Li J, Qin J, Wang D, Li J, Wang H, Wang S. Validating multivariate classification algorithms in Raman spectroscopy-based osteosarcoma cellular analysis. Anal Lett. 2021;55(7):1052–67.
    [70] Ma DY, Shang LW, Tang JL, Bao YL, Fu JJ, Yin JH. Classifying breast cancer tissue by Raman spectroscopy with one-dimensional convolutional neural network. Spectroc Acta Pt A-Molec Biomolec Spectr. 2021;256: 119732.
    [71] Conforti PM, D’Acunto M, Russo P. Deep learning for chondrogenic tumor classification through wavelet transform of Raman spectra. Sensors. 2022;22:7492.
    [72] Wu X, Li S, Xu Q, Yan X, Fu Q, Fu X, Fang X, Zhang Y. Rapid and accurate identification of colon cancer by Raman spectroscopy coupled with convolutional neural networks. Jpn J Appl Phys. 2021;60(6): 067001.
    [73] Li Z, Li Z, Chen Q, Zhang J, Dunham ME, McWhorter AJ, Feng J-M, Li Y, Yao S, Xu J. Machine-learning-assisted spontaneous Raman spectroscopy classification and feature extraction for the diagnosis of human laryngeal cancer. Comput Biol Med. 2022;146: 105617.
    [74] Qi Y, Yang L, Liu B, Liu L, Liu Y, Zheng Q, Liu D, Luo J. Accurate diagnosis of lung tissues for 2D Raman spectrogram by deep learning based on short-time Fourier transform. Anal Chim Acta. 2021;1179: 338821.
    [75] Qi Y, Yang L, Liu B, Liu L, Liu Y, Zheng Q, Liu D, Luo J. Highly accurate diagnosis of lung adenocarcinoma and squamous cell carcinoma tissues by deep learning. Spectroc Acta Pt A-Molec Biomolec Spectr. 2022;265: 120400.
    [76] Qi Y, Zhang G, Yang L, Liu B, Zeng H, Xue Q, Liu D, Zheng Q, Liu Y. High-precision intelligent cancer diagnosis method: 2D Raman figures combined with deep learning. Anal Chem. 2022;94(17):6491–501.
    [77] Xia J, Zhu L, Yu M, Zhang T, Zhu Z, Lou X, Sun G, Dong M. Analysis and classification of oral tongue squamous cell carcinoma based on Raman spectroscopy and convolutional neural networks. J Mod Opt. 2020;67(6):481–9.
    [78] Yan H, Yu MX, Xia JB, Zhu LQ, Zhang T, Zhu ZH, Sun GK. Diverse region-based CNN for tongue squamous cell carcinoma classification with Raman spectroscopy. IEEE Access. 2020;8:127313–28.
    [79] Li Z, Li Z, Chen Q, Ramos A, Zhang J, Boudreaux JP, Thiagarajan R, Bren-Mattison Y, Dunham ME, McWhorter AJ, Li X, Feng J-M, Li Y, Yao S, Xu J. Detection of pancreatic cancer by convolutional-neural-network-assisted spontaneous Raman spectroscopy with critical feature visualization. Neural Netw. 2021;144:455–64.
    [80] Bratchenko IA, Bratchenko LA, Khristoforova YA, Moryatov AA, Kozlo SV, Zakharo VP. Classification of skin cancer using convolutional neural networks analysis of Raman spectra. Comput Meth Programs Biomed. 2022;219:106755.
    [81] O’Dwyer K, Domijan K, Dignam A, Butler M, Hennelly BM. Automated Raman micro-spectroscopy of epithelial cell nuclei for high-throughput classification. Cancers. 2021;13(19):4767.
    [82] Iwasaki K, Araki A, Krishna CM, Maruyama R, Yamamoto T, Noothalapati H. Identification of molecular basis for objective discrimination of breast cancer cells (MCF-7) from normal human mammary epithelial cells by Raman microspectroscopy and multivariate curve resolution analysis. Int J Mol Sci. 2021;22(2):800.
    [83] Santos IP, Martins CB, de Carvalho LAEB, Marques MPM, de Carvalho ALMB. Who’s who? Discrimination of human breast cancer cell lines by Raman and FTIR microspectroscopy. Cancers. 2022;14(2):452.
    [84] Bukva M, Dobra G, Gomez-Perez J, Koos K, Harmati M, Gyukity-Sebestyen E, Biro T, Jenei A, Kormondi S, Horvath P, Konya Z, Klekner A, Buzas K. Raman spectral signatures of serum-derived extracellular vesicle-enriched isolates may support the diagnosis of CNS tumors. Cancers. 2021;13(6):1407.
    [85] Mandrell CT, Holland TE, Wheeler JE, Esmaeili SMA, Amar K, Chowdhury F, Sivakumar P. Machine learning approach to Raman spectrum analysis of MIA PaCa-2 pancreatic cancer tumor repopulating cells for classification and feature analysis. Life. 2020;10(9):181.
    [86] Ma MR, Tian XC, Chen FF, Ma XJ, Guo WJ, Lv XY. The application of feature engineering in establishing a rapid and robust model for identifying patients with glioma. Lasers Med Sci. 2022;37(2):1007–15.
    [87] Ito H, Uragami N, Miyazaki T, Yang W, Issha K, Matsuo K, Kimura S, Arai Y, Tokunaga H, Okada S, Kawamura M, Yokoyama N, Kushima M, Inoue H, Fukagai T, Kamijo Y. Highly accurate colorectal cancer prediction model based on Raman spectroscopy using patient serum. World J Gastrointest Oncol. 2020;12(11):1311–24.
    [88] Giamougiannis P, Silva RVO, Freitas DLD, Lima KMG, Anagnostopoulos A, Angelopoulos G, Naik R, Wood NJ, Martin-Hirsch PL, Martin FL. Raman spectroscopy of blood and urine liquid biopsies for ovarian cancer diagnosis: Identification of chemotherapy effects. J Biophotonics. 2021;14(11): e202100195.
    [89] Yan Z, Ma C, Mo J, Han W, Lv X, Chen C, Chen C, Nie X. Rapid identification of benign and malignant pancreatic tumors using serum Raman spectroscopy combined with classification algorithms. Optik. 2020;208: 164473.
    [90] Tian X, Chen C, Chen C, Yan Z, Wu W, Chen F, Chen J, Lv X. Application of Raman spectroscopy technology based on deep learning algorithm in the rapid diagnosis of glioma. J Raman Spectrosc. 2022;53(4):735–45.
    [91] Chen C, Wu W, Chen C, Chen F, Dong X, Ma M, Yan Z, Lv X, Ma Y, Zhu M. Rapid diagnosis of lung cancer and glioma based on serum Raman spectroscopy combined with deep learning. J Raman Spectrosc. 2021;52(11):1798–809.
    [92] Penders J, Nagelkerke A, Cunnane EM, Pedersen SV, Pence IJ, Coombes RC, Stevens MM. Single particle automated Raman trapping analysis of breast cancer cell-derived extracellular vesicles as cancer biomarkers. ACS Nano. 2021;15(11):18192–205.
    [93] Atkins CG, Buckley K, Blades MW, Turner RFB. Raman spectroscopy of blood and blood components. Appl Spectrosc. 2017;71(5):767–93.
    [94] Chen GY, Qian SE. Denoising of hyperspectral imagery using principal component analysis and wavelet shrinkage. IEEE Trans Geosci Remote Sensing. 2011;49(3):973–80.
    [95] Trevisan J, Angelov PP, Carmichael PL, Scott AD, Martin FL. Extracting biological information with computational analysis of Fourier-transform infrared (FTIR) biospectroscopy datasets: Current practices to future perspectives. Analyst. 2012;137:3202–15.
    [96] Jarvis RM, Goodacre R. Genetic algorithm optimization for pre-processing and variable selection of spectroscopic data. Bioinformatics. 2005;21(7):860–8.
    [97] Martin FL, Kelly JG, Llabjani V, Martin-Hirsch PL, Patel II, Trevisan J, Fullwood NJ, Walsh MJ. Distinguishing cell types or populations based on the computational analysis of their infrared spectra. Nat Protoc. 2010;5(11):1748–60.
    [98] Tang M, Xia L, Wei D, Yan S, Du C, Cui H-L. Distinguishing different cancerous human cells by Raman spectroscopy based on discriminant analysis methods. Appl Sci. 2017;7:900.
    [99] Jain AK, Duin RPW, Mao JC. Statistical pattern recognition: A review. IEEE Trans Pattern Anal Mach Intell. 2000;22(1):4–37.
    [100] He Q, Yang W, Luo W, Wilhelm S, Weng B. Label-free differentiation of cancer and non-cancer cells based on machine-learning-algorithm-assisted fast Raman imaging. Biosensors. 2022;12(4):250.
    [101] Wen J, Tang T, Kanwal S, Lu Y, Tao C, Zheng L, Zhang D, Gu Z. Detection and classification of multi-type cells by using confocal Raman spectroscopy. Front Chem. 2021;9: 641670.
    [102] Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):273–97.
    [103] Noori R, Abdoli MA, Ghasrodashti AA, Ghazizade MJ. Prediction of municipal solid waste generation with combination of support vector machine and principal component analysis: A case study of Mashhad. Environ Prog Sustain Energy. 2009;28(2):249–58.
    [104] You HH, Ma ZY, Tang YJ, Wang YL, Yan JH, Ni MJ, Cen KF, Huang QX. Comparison of ANN (MLP), ANFIS, SVM, and RF models for the online classification of heating value of burning municipal solid waste in circulating fluidized bed incinerators. Waste Manage. 2017;68:186–97.
    [105] Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP. Random forest: A classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci. 2003;43(6):1947–58.
    [106] Dhanabal S, Chandramathi SA. A review of various k-nearest neighbor query processing techniques. Int J Comput Appl. 2011;31(7):14–22.
    [107] Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Commun ACM. 2017;60(6):84–90.
    [108] He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE; 2016. p. 770-8.
    [109] Szegedy C, Liu W, Jia Y Q, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015; 1-9.
    [110] Zia T, Zahid U. Long short-term memory recurrent neural network architectures for Urdu acoustic modeling. Int J Speech Technol. 2019;22(1):21–30.
    [111] Liang X, Zhang P, Ma M, Yang T, Zhao X, Zhang R, Jing M, Song R, Wang L, Fan J. Multiplex ratiometric gold nanoprobes based on surface-enhanced Raman scattering enable accurate molecular detection and imaging of bladder cancer. Nano Res. 2022;15(4):3487–95.
    [112] Qian H, Wang Y, Ma Z, Qian L, Shao X, Jin D, Cao M, Liu S, Chen H, Pan J, Xue W. Surface-enhanced Raman spectroscopy of pretreated plasma samples predicts disease recurrence in muscle-invasive bladder cancer patients undergoing neoadjuvant chemotherapy and radical cystectomy. Int J Nanomed. 2022;17:1635–46.
    [113] Hu D, Xu X, Zhao Z, Li C, Tian Y, Liu Q, Shao B, Chen S, Zhao Y, Li L, Bi H, Chen A, Fu C, Cui X, Zeng Y. Detecting urine metabolites of bladder cancer by surface-enhanced Raman spectroscopy. Spectroc Acta Pt A-Molec Biomolec Spectr. 2021;247: 119108.
    [114] Li J, Wang C, Yao Y, Zhu Y, Yan C, Zhuge Q, Qu L, Han C. Label-free discrimination of glioma brain tumors in different stages by surface enhanced Raman scattering. Talanta. 2020;216: 120983.
    [115] Kowalska AA, Berus S, Szleszkowski L, Kaminska A, Kmiecik A, Ratajczak-Wielgomas K, Jurek T, Zadka L. Brain tumour homogenates analysed by surface-enhanced Raman spectroscopy: Discrimination among healthy and cancer cells. Spectroc Acta Pt A-Molec Biomolec Spectr. 2020;231: 117769.
    [116] Kowalska AA, Czaplicka M, Nowicka AB, Nicinski K, Piotrowska A, Kaminska A. Association between grade brain tumors and the interleukin-10 receptor subunit alpha based on surface-enhanced Raman spectroscopy and multivariate analysis. J Raman Spectrosc. 2021;52(11):1788–97.
    [117] Kim J, Park J, Ki J, Rho HW, Huh Y-M, Kim E, Son HY, Haam S. Simultaneous dual-targeted monitoring of breast cancer circulating miRNA via surface-enhanced Raman spectroscopy. Biosens Bioelectron. 2022;207: 114143.
    [118] Liu S, Su H-S, Yang Z, Zhang Y. Ag nanorods for label-free surface-enhanced Raman scattering analysis of cancer cells from cell lysates. ACS Appl Nano Mater. 2022;5(1):269–76.
    [119] Lee W-J, Kim K-J, Hossain MK, Cho H-Y, Choi J-W. DNA-gold nanoparticle conjugates for intracellular miRNA detection using surface-enhanced Raman spectroscopy. BioChip J. 2022;16(1):33–40.
    [120] Jibin K, Babu RV, Jayasree RS. Graphene-gold nanohybrid-based surface-enhanced Raman scattering platform on a portable easy-to-use centrifugal prototype for liquid biopsy detection of circulating breast cancer cells. ACS Sustain Chem Eng. 2021;9(46):15496–505.
    [121] Zhao Y, Fang X, Bai M, Zhang J, Yu H, Chen F, Zhao Y. A microfluidic surface-enhanced Raman scattering (SERS) sensor for microRNA in extracellular vesicles with nucleic acid-tyramine cascade amplification. Chin Chem Lett. 2022;33(4):2101–4.
    [122] Kim S, Kim TG, Lee SH, Kim W, Bang A, Moon SW, Song J, Shin J-H, Yu JS, Choi S. Label-free surface-enhanced Raman spectroscopy biosensor for on-site breast cancer detection using human tears. ACS Appl Mater Inter. 2020;12(7):7897–904.
    [123] Gao N, Wang Q, Tang J, Yao S, Li H, Yue X, Fu J, Zhong F, Wang T, Wang J. Non-invasive SERS serum detection technology combined with multivariate statistical algorithm for simultaneous screening of cervical cancer and breast cancer. Anal Bioanal Chem. 2021;413(19):4775–84.
    [124] Keshavarz M, Kassanos P, Tan B, Venkatakrishnan K. Metal-oxide surface-enhanced Raman biosensor template towards point-of-care EGFR detection and cancer diagnostics. Nanoscale Horiz. 2020;5(2):294–307.
    [125] Wang J, Xie H, Ding C. Designed co-DNA-locker and ratiometric SERS sensing for accurate detection of exosomes based on gold nanorod arrays. ACS Appl Mater Inter. 2021;13(28):32837–44.
    [126] Xu X, Lin J, Guo Y, Wu X, Xu Y, Zhang D, Zhang X, Yujiao X, Wang J, Yao C, Yao J, Xing J, Cao Y, Li Y, Ren W, Chen T, Ren Y, Wu A. TiO2-based surface-enhanced Raman scattering bio-probe for efficient circulating tumor cell detection on microfilter. Biosens Bioelectron. 2022;210: 114305.
    [127] Karunakaran V, Saritha VN, Ramya AN, Murali VP, Raghu KG, Sujathan K, Maiti KK. Elucidating Raman image-guided differential recognition of clinically confirmed grades of cervical exfoliated cells by dual biomarker-appended SERS-tag. Anal Chem. 2021;93(32):11140–50.
    [128] Avram L, Iancu SD, Stefancu A, Moisoiu V, Colnita A, Marconi D, Donca V, Buzdugan E, Craciun R, Leopold N, Crisan N, Coman I, Crisan D. SERS-based liquid biopsy of gastrointestinal tumors using a portable Raman device operating in a clinical environment. J Clin Med. 2020;9(1):212.
    [129] Gao S, Lin Y, Zheng M, Lin Y, Lin K, Xie S, Yu Y, Lin J. Label-free determination of liver cancer stages using surface-enhanced Raman scattering coupled with preferential adsorption of hydroxyapatite microspheres. Anal Methods. 2021;13(35):3885–93.
    [130] Er E, Sanchez-Iglesias A, Silvestri A, Arnaiz B, Liz-Marzan LM, Prato M, Criado A. Metal nanoparticles/MoS2 surface-enhanced Raman scattering-based sandwich immunoassay for a-fetoprotein detection. ACS Appl Mater Inter. 2021;13(7):8823–31.
    [131] Gao R, Zhan C, Wu C, Lu Y, Cao B, Huang J, Wang F, Yu L. Simultaneous single-cell phenotype analysis of hepatocellular carcinoma CTCs using a SERS-aptamer based microfluidic chip. Lab Chip. 2021;21(20):3888–98.
    [132] He M, Lin J, Akakuru OU, Xu XW, Li YY, Cao Y, Xu YP, Wu AG. Octahedral silver oxide nanoparticles enabling remarkable SERS activity for detecting circulating tumor cells. Sci China-Life Sci. 2022;65(3):561–71.
    [133] Huang Y, Xie T, Zou K, Gu Y, Yang G, Zhang F, Qu L-L, Yang S. Ultrasensitive SERS detection of exhaled biomarkers of lung cancer using a multifunctional solid phase extraction membrane. Nanoscale. 2021;13(31):13344–52.
    [134] Fan C, Zhao N, Cui K, Chen G, Chen Y, Wu W, Li Q, Cui Y, Li R, Xiao Z. Ultrasensitive exosome detection by modularized SERS labeling for postoperative recurrence surveillance. ACS Sens. 2021;6(9):3234–41.
    [135] Huang L, Zhang Z, Li G. DNA strand displacement based surface-enhanced Raman scattering-fluorescence dual-mode nanoprobes for quantification and imaging of vascular endothelial growth factor in living cells. Biosens Bioelectron. 2022;204: 114069.
    [136] Reza KK, Dey S, Wuethrich A, Wang J, Behren A, Antaw F, Wang Y, Ibn Sina AA, Trau M. In situ single cell proteomics reveals circulating tumor cell heterogeneity during treatment. ACS Nano. 2021;15(7):11231–43.
    [137] Lin D, Hsieh C-L, Hsu K-C, Liao P-H, Qiu S, Gong T, Yong K-T, Feng S, Kong KV. Geometrically encoded SERS nanobarcodes for the logical detection of nasopharyngeal carcinoma-related progression biomarkers. Nat Commun. 2021;12(1):3430.
    [138] Han Z, Yi J, Yang Y, Li D, Peng C, Long S, Peng X, Shen Y, Liu B, Qiao L. SERS and MALDI-TOF MS based plasma exosome profiling for rapid detection of osteosarcoma. Analyst. 2021;146(21):6496–505.
    [139] Sujai PT, Shamjith S, Joseph MM, Maiti KK. Elucidating gold-MnO2 core-shell nanoenvelope for real time SERS-guided photothermal therapy on pancreatic cancer cells. ACS Appl Bio Mater. 2021;4(6):4962–72.
    [140] Hu J, Shao X, Chi C, Zhu Y, Xin Z, Sha J, Dong B, Pan J, Xue W. Surface-enhanced Raman spectroscopy of serum predicts sensitivity to docetaxel-based chemotherapy in patients with metastatic castration-resistant prostate cancer. J Innov Opt Health Sci. 2021;14(04):2141006.
    [141] Rajput S, Pink D, Findlay S, Woolner E, Lewis JD, McDermott MT. Application of surface-enhanced Raman spectroscopy to guide therapy for advanced prostate cancer patients. ACS Sens. 2022;7(3):827–38.
    [142] Turan E, Zengin A, Suludere Z, Kalkan NO, Tamer U. Construction of a sensitive and selective plasmonic biosensor for prostate specific antigen by combining magnetic molecularly-imprinted polymer and surface-enhanced Raman spectroscopy. Talanta. 2022;237: 122926.
    [143] Czaplicka M, Kowalska AA, Nowicka AB, Kurzydlowski D, Gronkiewicz Z, Machulak A, Kukwa W, Kaminska A. Raman spectroscopy and surface-enhanced Raman spectroscopy (SERS) spectra of salivary glands carcinoma, tumor and healthy tissues and their homogenates analyzed by chemometry: Towards development of the novel tool for clinical diagnosis. Anal Chim Acta. 2021;1177: 338784.
    [144] Liang X, Miao X, Xiao W, Ye Q, Wang S, Lin J, Li C, Huang Z. Filter-membrane-based ultrafiltration coupled with surface-enhanced Raman spectroscopy for potential differentiation of benign and malignant thyroid tumors from blood plasma. Int J Nanomed. 2020;15:2303–14.
    [145] Fang Y, Lin T, Zheng D, Zhu Y, Wang L, Fu Y, Wang H, Wu X, Zhang P. Rapid and label-free identification of different cancer types based on surface-enhanced Raman scattering profiles and multivariate statistical analysis. J Cell Biochem. 2021;122(2):277–89.
    [146] Haldavnekar R, Vijayakumar SC, Venkatakrishnan K, Tan B. Prediction of cancer stem cell fate by surface-enhanced Raman scattering functionalized nanoprobes. ACS Nano. 2020;14(11):15468–91.
    [147] Luo S, Ma L, Tian F, Gu Y, Li J, Zhang P, Yang G, Li H, Qu L-L. Fluorescence and surface-enhanced Raman scattering dual-mode nanoprobe for monitoring telomerase activity in living cells. Microchem J. 2022;175: 107171.
    [148] Kim HS, Lee T, Yun J, Lee G, Hong Y. Cancer protein biomarker identification and quantification using nanoforest substrate and hand-held Raman spectrometer. Microchem J. 2021;160: 105632.
    [149] Fang X, Zeng Q, Yan X, Zhao Z, Chen N, Deng Q, Zhu M, Zhang Y, Li S. Fast discrimination of tumor and blood cells by label-free surface-enhanced Raman scattering spectra and deep learning. J Appl Phys. 2021;129(12): 123103.
    [150] Fang X, Li S, Fu Q, Wang P, Wu X, Zhang Y. Label-free identification of lung cancer cells from blood cells based on surface-enhanced Raman scattering and support vector machine. Optik. 2021;248: 168157.
    [151] Culum NM, Cooper TT, Lajoie GA, Dayarathna T, Pasternak SH, Liu J, Fu Y, Postovit L-M, Lagugne-Labarthet F. Characterization of ovarian cancer-derived extracellular vesicles by surface-enhanced Raman spectroscopy. Analyst. 2021;146(23):7194–206.
    [152] Cheng NT, Chen DJ, Lou B, Fu J, Wang HY. A biosensing method for the direct serological detection of liver diseases by integrating a SERS-based sensor and a CNN classifier. Biosens Bioelectron. 2021;186: 113246.
    [153] Banaei N, Moshfegh J, Kim B. Surface enhanced Raman spectroscopy-based immunoassay detection of tumor-derived extracellular vesicles to differentiate pancreatic cancers from chronic pancreatitis. J Raman Spectrosc. 2021;52(11):1810–9.
    [154] Dawuti W, Zheng X, Liu H, Zhao H, Dou J, Sun L, Chu J, Lin R, Lue G. Urine surface-enhanced Raman spectroscopy combined with SVM algorithm for rapid diagnosis of liver cirrhosis and hepatocellular carcinoma. Photodiagnosis Photodyn Ther. 2022;38: 102811.
    [155] Liu K, Jin S, Song Z, Jiang L. High accuracy detection of malignant pleural effusion based on label-free surface-enhanced Raman spectroscopy and multivariate statistical analysis. Spectroc Acta Pt A-Molec Biomolec Spectr. 2020;226: 117632.
    [156] Roman M, Wrobel TP, Paluszkiewicz C, Kwiatek WM. Comparison between high definition FT-IR, Raman and AFM-IR for subcellular chemical imaging of cholesteryl esters in prostate cancer cells. J Biophotonics. 2020;13(5): e201960094.
    [157] Lombardini A, Mytskaniuk V, Sivankutty S, Andresen ER, Chen XQ, Wenger J, Fabert M, Joly N, Louradour F, Kudlinski A, Rigneault H. High-resolution multimodal flexible coherent Raman endoscope. Light Sci Appl. 2018;7:10.
    [158] Prince Richard C, Potma EO. Going visible:high-resolution coherent Raman imaging of cells and tissues. Light Sci Appl. 2019;8:10.
    [159] Lin H, Liao C-S, Wang P, Kong N, Cheng J-X. Spectroscopic stimulated Raman scattering imaging of highly dynamic specimens through matrix completion. Light Sci Appl. 2018;7:17179.
    [160] Chappard D, Guillaume B, Teman G, Kun-Darbois J-D. Raman spectroscopic analysis and imaging in two cases of benign cementoma: Comparison with dental and bone tissues. J Raman Spectrosc. 2020;51(7):1044–55.
    [161] Cordero E, Ruger J, Marti D, Mondol AS, Hasselager T, Mogensen K, Hermann GG, Popp J, Schie IW. Bladder tissue characterization using probe-based Raman spectroscopy: Evaluation of tissue heterogeneity and influence on the model prediction. J Biophotonics. 2020;13(2): e201960025.
    [162] Kujdowicz M, Placha W, Mech B, Chrabaszcz K, Okon K, Malek K. In vitro spectroscopy-based profiling of urothelial carcinoma: A Fourier transform infrared and Raman imaging study. Cancers. 2021;13(1):123.
    [163] Abramczyk H, Brozek-Pluska B, Kopec M, Surmacki J, Blaszczyk M, Radek M. Redox imbalance and biochemical changes in cancer by probing redox-sensitive mitochondrial cytochromes in label-free visible resonance Raman imaging. Cancers. 2021;13(5):960.
    [164] Straehle J, Erny D, Neidert N, Heiland DH, El Rahal A, Sacalean V, Steybe D, Schmelzeisen R, Vlachos A, Mizaikoff B, Reinacher PC, Coenen VA, Prinz M, Beck J, Schnell O. Neuropathological interpretation of stimulated Raman histology images of brain and spine tumors: part B. Neurosurg Rev. 2022;45(2):1721–9.
    [165] Neidert N, Straehle J, Erny D, Sacalean V, El Rahal A, Steybe D, Schmelzeisen R, Vlachos A, Reinacher PC, Coenen VA, Mizaikoff B, Heiland DH, Prinz M, Beck J, Schnell O. Stimulated Raman histology in the neurosurgical workflow of a major European neurosurgical center - part A. Neurosurg Rev. 2022;45(2):1731–9.
    [166] Marro M, Rodriguez-Rivero AM, Araujo-Andrade C, Fernandez-Figueras MT, Perez-Roca L, Castella E, Navines J, Mariscal A, Julian JF, Turon P, Loza-Alvarez P. Unravelling the encapsulation of DNA and other biomolecules in HAp microcalcifications of human breast cancer tissues by Raman imaging. Cancers. 2021;13(11):2658.
    [167] Liao Z, Lizio MG, Corden C, Khout H, Rakha E, Notingher I. Feasibility of integrated high-wavenumber Raman imaging and fingerprint Raman spectroscopy for fast margin assessment in breast cancer surgery. J Raman Spectrosc. 2020;51(10):1986–95.
    [168] Paidi SK, Shah V, Raj P, Glunde K, Pandey R, Barman I. Coarse Raman and optical diffraction tomographic imaging enable label-free phenotyping of isogenic breast cancer cells of varying metastatic potential. Biosens Bioelectron. 2021;175: 112863.
    [169] D’Acunto M, Gaeta R, Capanna R, Franchi A. Contribution of Raman spectroscopy to diagnosis and grading of chondrogenic tumors. Sci Rep. 2020;10(1):2155.
    [170] Brozek-Pluska B, Dziki A, Abramczyk H. Virtual spectral histopathology of colon cancer-biomedical applications of Raman spectroscopy and imaging. J Mol Liq. 2020;303: 112676.
    [171] Pekmezci M, Morshed RA, Chunduru P, Pandian B, Young J, Villanueva-Meyer JE, Tihan T, Sloan EA, Aghi MK, Molinaro AM, Berger MS, Hervey-Jumper SL. Detection of glioma infiltration at the tumor margin using quantitative stimulated Raman scattering histology. Sci Rep. 2021;11(1):12162.
    [172] Di L, Eichberg DG, Park YJ, Shah AH, Jamshidi AM, Luther EM, Lu VM, Komotar RJ, Ivan ME, Gultekin SH. Rapid Intraoperative diagnosis of meningiomas using stimulated Raman histology. World Neurosurg. 2021;150:E108–16.
    [173] Kar S, Jaswandkar SV, Katti KS, Kang JW, So PTC, Paulmurugan R, Liepmann D, Venkatesan R, Katti DR. Label-free discrimination of tumorigenesis stages using in vitro prostate cancer bone metastasis model by Raman imaging. Sci Rep. 2022;12(1):8050.
    [174] Roman M, Wrobel TP, Panek A, Paluszkiewicz C, Kwiatek WM. Lipid droplets in prostate cancer cells and effect of irradiation studied by Raman microspectroscopy. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865(9): 158753.
    [175] Feng X, Fox MC, Reichenberg JS, Lopes FCPS, Sebastian KR, Dunn AK, Markey MK, Tunnell JW. Superpixel Raman spectroscopy for rapid skin cancer margin assessment. J Biophotonics. 2020;13(2): e201960109.
    [176] Fitzgerald CWR, Dogan S, Bou-Nassif R, McLean T, Woods R, Cracchiolo JR, Ganly I, Tabar V, Cohen MA. Stimulated Raman histology for rapid intra-operative diagnosis of sinonasal and skull base tumors. Laryngoscope. 2022;132(11):2142–7.
    [177] Shin KS, Francis AT, Hill AH, Laohajaratsang M, Cimino PJ, Latimer CS, Gonzalez-Cuyar LF, Sekhar LN, Juric-Sekhar G, Fu D. Intraoperative assessment of skull base tumors using stimulated Raman scattering microscopy. Sci Rep. 2019;9:20392.
    [178] Lee D, Du J, Yu R, Su Y, Heath JR, Wei L. Visualizing subcellular enrichment of glycogen in live cancer cells by stimulated Raman scattering. Anal Chem. 2020;92(19):13182–91.
    [179] Du J, Su Y, Qian C, Yuan D, Miao K, Lee D, Ng AHC, Wijker RS, Ribas A, Levine RD, Heath JR, Wei L. Raman-guided subcellular pharmaco-metabolomics for metastatic melanoma cells. Nat Commun. 2020;11(1):4830.
    [180] Boitor R, de Wolf C, Weesie F, Shipp DW, Varma S, Veitch D, Wernham A, Koloydenko A, Puppels G, Nijsten T, Williams HC, Caspers P, Notingher I. Clinical integration of fast Raman spectroscopy for Mohs micrographic surgery of basal cell carcinoma. Biomed Opt Express. 2021;12(4):2015–26.
    [181] Einstein EH, Ablyazova F, Rosenberg A, Harshan M, Wahl S, Har-El G, Constantino PD, Ellis JA, Boockvar JA, Langer DJ, D’Amico RS. Stimulated Raman histology facilitates accurate diagnosis in neurosurgical patients: A one-to-one noninferiority study. J Neuro-Oncol. 2022;159(2):369–75.
    [182] Giardina G, Micko A, Bovenkamp D, Krause A, Placzek F, Papp L, Krajnc D, Spielvogel CP, Winklehner M, Hoftberger R, Vila G, Andreana M, Leitgeb R, Drexler W, Wolfsberger S, Unterhuber A. Morpho-molecular metabolic analysis and classification of human pituitary gland and adenoma biopsies based on multimodal optical imaging. Cancers. 2021;13(13):3234.
    [183] Horgan CC, Nagelkerke A, Whittaker TE, Nele V, Massi L, Kauscher U, Penders J, Bergholt MS, Hood SR, Stevens MM. Molecular imaging of extracellular vesicles in vitro via Raman metabolic labelling. J Mat Chem B. 2020;8(20):4447–59.
    [184] Uematsu M, Kita Y, Shimizu T, Shindou H. Multiplex fatty acid imaging inside cells by Raman microscopy. Faseb J. 2020;34(8):10357–72.
    [185] Radwan B, Adamczyk A, Tott S, Czamara K, Kaminska K, Matuszyk E, Baranska M. Labeled vs. label-free Raman imaging of lipids in endothelial cells of various origins. Molecules. 2020;25(23):5752.
    [186] Abramczyk H, Imiela A, Surmacki J. Novel strategies of Raman imaging for monitoring intracellular retinoid metabolism in cancer cells. J Mol Liq. 2021;334: 116033.
    [187] Tipping WJ, Wilson LT, An C, Leventi AA, Wark AW, Wetherill C, Tomkinson NCO, Faulds K, Graham D. Stimulated Raman scattering microscopy with spectral phasor analysis: applications in assessing drug-cell interactions. Chem Sci. 2022;13(12):3468–76.
    [188] Bae K, Zheng W, Huang ZW. Spatial light-modulated stimulated Raman scattering (SLM-SRS) microscopy for rapid multiplexed vibrational imaging. Theranostics. 2020;10(1):312–22.
    [189] Sepp K, Lee M, Bluntzer MTJ, Helgason GV, Hulme AN, Brunton VG. Utilizing stimulated Raman scattering microscopy to study intracellular distribution of label-free ponatinib in live cells. J Med Chem. 2020;63(5):2028–34.
    [190] Lin P, Ni HL, Li HT, Vickers NA, Tan YY, Gong RY, Bifano T, Cheng JX. Volumetric chemical imaging in vivo by a remote-focusing stimulated Raman scattering microscope. Opt Express. 2020;28(20):30210–21.
    [191] Liu C, Xu T, Cheng G, Zhang X. Target-triggered regioselective assembly of nanoprobes for Raman imaging of dual cancer biomarkers in living cells. Sens Actuat B-Chem. 2021;330: 129319.
    [192] Chen H, Luo C, Zhang S. Intracellular imaging and concurrent pH sensing of cancer-derived exosomes using surface-enhanced Raman scattering. Anal Bioanal Chem. 2021;413(15):4091–101.
    [193] Gu Y, Bi X, Ye J. Gap-enhanced resonance Raman tags for live-cell imaging. J Mat Chem B. 2020;8(31):6944–55.
    [194] Yuan Y, Raj P, Zhang J, Siddhanta S, Barman I, Bulte JWM. Furin-mediated self-assembly of olsalazine nanoparticles for targeted Raman imaging of tumors. Angew Chem-Int Edit. 2021;60(8):3923–7.
    [195] de Albuquerque CDL, Schultz ZD. Super-resolution surface-enhanced Raman scattering imaging of single particles in cells. Anal Chem. 2020;92(13):9389–98.
    [196] Burgio F, Piffaretti D, Schmidt F, Pieles U, Reinert M, Ritz M-F, Saxer S. Tuning the surface chemistry of gold nanoparticles to specifically image glioblastoma cells using surface-enhanced Raman spectroscopy. ACS Appl Nano Mater. 2020;3(3):2447–54.
    [197] Bae K, Xin L, Zheng W, Tang C, Ang B-T, Huang Z. Mapping the intratumoral heterogeneity in glioblastomas with hyperspectral stimulated Raman scattering microscopy. Anal Chem. 2021;93(4):2377–84.
    [198] Yang Y, Yang Y, Liu Z, Guo L, Li S, Sun X, Shao Z, Ji M. Microcalcification-based tumor malignancy evaluation in fresh breast biopsies with hyperspectral stimulated Raman scattering. Anal Chem. 2021;93(15):6223–31.
    [199] Hollon TC, Orringer DA. An automated tissue-to-diagnosis pipeline using intraoperative stimulated Raman histology and deep learning. Mol Cell Oncol. 2020;7(3): e1736742.
    [200] Zhang Q, Yun KK, Wang H, Yoon SW, Lu F, Won D. Automatic cell counting from stimulated Raman imaging using deep learning. PLoS ONE. 2021;16(7): e0254586.
    [201] Liu Z, Su W, Ao J, Wang M, Jiang Q, He J, Gao H, Lei S, Nie J, Yan X, Guo X, Zhou P, Hu H, Ji M. Instant diagnosis of gastroscopic biopsy via deep-learned single-shot femtosecond stimulated Raman histology. Nat Commun. 2022;13(1):4050.
    [202] Hollon TC, Pandian B, Urias E, Save AV, Adapa AR, Srinivasan S, Jairath NK, Farooq Z, Marie T, Al-Holou WN, Eddy K, Heth JA, Khalsa SSS, Conway K, Sagher O, Bruce JN, Canoll P, Freudiger CW, Camelo-Piragua S, Lee H, Orringer DA. Rapid, label-free detection of diffuse glioma recurrence using intraoperative stimulated Raman histology and deep neural networks. Neuro Oncol. 2021;23(1):144–55.
    [203] Zhang LL, Wu YZ, Zheng B, Su LZ, Chen Y, Ma S, Hu QQ, Zou X, Yao L, Yang YL, Chen L, Mao Y, Chen Y, Ji MB. Rapid histology of laryngeal squamous cell carcinoma with deep-learning based stimulated Raman scattering microscopy. Theranostics. 2019;9(9):2541–54.
    [204] Suhito IR, Han Y, Ryu Y-S, Son H, Kim T-H. Autofluorescence-Raman mapping Integration analysis for ultra-fast label-free monitoring of adipogenic differentiation of stem cells. Biosens Bioelectron. 2021;178: 113018.
    [205] Xiong HQ, Qian NX, Miao YP, Zhao ZL, Chen C, Min W. Super-resolution vibrational microscopy by stimulated Raman excited fluorescence. Light Sci Appl. 2021;10:87.
    [206] Freudiger CW, Min W, Saar BG, Lu S, Holtom GR, He CW, Tsai JC, Kang JX, Xie XS. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science. 2008;322(5909):1857–61.
    [207] Ji MB, Orringer DA, Freudiger CW, Ramkissoon S, Liu XH, Lau D, Golby AJ, Norton I, Hayashi M, Agar NYR, Young GS, Spino C, Santagata S, Camelo-Piragua S, Ligon KL, Sagher O, Xie XS. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy. Sci Transl Med. 2013;5(201):201ra119.
    [208] Orringer DA, Pandian B, Niknafs YS, Hollon TC, Boyle J, Lewis S, Garrard M, Hervey-Jumper SL, Garton HJL, Maher CO, Heth JA, Sagher O, Wilkinson DA, Snuderl M, Venneti S, Ramkissoon SH, McFadden KA, Fisher-Hubbard A, Lieberman AP, Johnson TD, Xie XS, Trautman JK, Freudiger CW, Camelo-Piragua S. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy. Nat Biomed Eng. 2017;1(2):0027.
    [209] Doherty T, McKeever S, Al-Attar N, Murphy T, Aura C, Rahman A, O’Neill A, Finn SP, Kay E, Gallagher WM, Watson RWG, Gowen A, Jackman P. Feature fusion of Raman chemical imaging and digital histopathology using machine learning for prostate cancer detection. Analyst. 2021;146(13):4195–211.
  • 加载中
图(1)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  1
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-23
  • 录用日期:  2023-05-30
  • 修回日期:  2023-05-17
  • 网络出版日期:  2023-07-07

目录

    /

    返回文章
    返回