留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Green lithium: photoelectrochemical extraction

Green lithium: photoelectrochemical extraction[J]. PhotoniX. doi: 10.1186/s43074-023-00100-9
引用本文: Green lithium: photoelectrochemical extraction[J]. PhotoniX. doi: 10.1186/s43074-023-00100-9
Zhongxiao Li, Zhen Li, Hao Huang, Yunduo Yao, Bilawal Khan, Ye Zhu, Kuo-Wei Huang, Zhiping Lai, Jr-Hau He. Green lithium: photoelectrochemical extraction[J]. PhotoniX. doi: 10.1186/s43074-023-00100-9
Citation: Zhongxiao Li, Zhen Li, Hao Huang, Yunduo Yao, Bilawal Khan, Ye Zhu, Kuo-Wei Huang, Zhiping Lai, Jr-Hau He. Green lithium: photoelectrochemical extraction[J]. PhotoniX. doi: 10.1186/s43074-023-00100-9

Green lithium: photoelectrochemical extraction

doi: 10.1186/s43074-023-00100-9

Green lithium: photoelectrochemical extraction

Funds: We acknowledge the financial support from City University of Hong Kong and King Abdullah University of Science and Technology.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • [1] Zhao J, Hong M, Ju Z, Yan X, Gai Y, Liang Z. Durable lithium metal anodes enabled by interfacial layers based on mechanically interlocked networks capable of energy dissipation. Angew Chem Int Ed Engl. 2022;61:e202214386.
    [2] Yue X, Zhang J, Dong Y, Chen Y, Shi Z, Xu X, et al. Reversible Li plating on graphite anodes through electrolyte engineering for fast-charging batteries. Angew Chem Int Ed Engl. 2023;62:e202302285.
    [3] YaghoobnejadAsl H, Manthiram A. Toward sustainable batteries. Nat Sustain. 2020;4:379–80.
    [4] Zhu X, Meng F, Zhang Q, Xue L, Zhu H, Lan S, et al. LiMnO2 cathode stabilized by interfacial orbital ordering for sustainable lithium-ion batteries. Nat Sustain. 2020;4:392–401.
    [5] U.S. Geological Survey, Lithium. In: Mineral commodity summaries 2022. U.S. Geological Survey. 2022. https://doi.org/10.3133/mcs2022. Accessed 6 July 2022.
    [6] Yang S, Zhang F, Ding H, He P, Zhou H. Lithium metal extraction from seawater. Joule. 2018;2:1648–51.
    [7] Wanger TC. The Lithium future-resources, recycling, and the environment. Conserv Lett. 2011;4:202–6.
    [8] Tang L, Huang S, Wang Y, Liang D, Li Y, Li J, et al. Highly efficient, stable, and recyclable hydrogen manganese oxide/cellulose film for the extraction of lithium from seawater. ACS Appl Mater Interfaces. 2020;12:9775–81.
    [9] Hong HJ, Ryu T, Park IS, Kim M, Shin J, Kim BG, et al. Highly porous and surface-expanded spinel hydrogen manganese oxide (HMO)/Al2O3 composite for effective lithium (Li) recovery from seawater. Chem Eng J. 2018;337:455–61.
    [10] Liu C, Li Y, Lin D, Hsu PC, Liu B, Yan G, et al. Lithium extraction from seawater through pulsed electrochemical intercalation. Joule. 2020;4:1459–69.
    [11] Yu J, Fang D, Zhang H, Leong ZY, Zhang J, Li X, et al. Ocean mining: a fluidic electrochemical route for lithium extraction from seawater. ACS Mater Lett. 2020;2:1662–8.
    [12] Ryu T, Haldorai Y, Rengaraj A, Shin J, Hong H-J, Lee G-W, et al. Recovery of lithium ions from seawater using a continuous flow adsorption column packed with granulated chitosan-lithium manganese oxide. Ind Eng Chem Res. 2016;55:7218–25.
    [13] Kim JH, Hansora D, Sharma P, Jang JW, Lee JS. Toward practical solar hydrogen production - an artificial photosynthetic leaf-to-farm challenge. Chem Soc Rev. 2019;48:1908–71.
    [14] Kang D, Young JL, Lim H, Klein WE, Chen H, Xi YZ, et al. Printed assemblies of GaAs photoelectrodes with decoupled optical and reactive interfaces for unassisted solar water splitting. Nat Energy. 2017;2:17043.
    [15] Sathre R, Greenblatt JB, Walczak K, Sharp ID, Stevens JC, Ager JW, et al. Opportunities to improve the net energy performance of photoelectrochemical water-splitting technology. Energy Environ Sci. 2016;9:803–19.
    [16] Landman A, Halabi R, Dias P, Dotan H, Mehlmann A, Shter GE, et al. Decoupled photoelectrochemical water splitting system for centralized hydrogen production. Joule. 2020;4:448–71.
    [17] Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, et al. Solar water splitting cells. Chem Rev. 2010;110:6446–73.
    [18] Peerakiatkhajohn P, Yun J-H, Wang S, Wang L. Review of recent progress in unassisted photoelectrochemical water splitting: from material modification to configuration design. J Photon Energy. 2016;7:012006.
    [19] Pinaud BA, Benck JD, Seitz LC, Forman AJ, Chen Z, Deutsch TG, et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ Sci. 2013;6:1983–2002.
    [20] Shaner MR, Atwater HA, Lewis NS, McFarland EW. A comparative technoeconomic analysis of renewable hydrogen production using solar energy. Energy Environ Sci. 2016;9:2354–71.
    [21] Grimm A, de Jong WA, Kramer GJ. Renewable hydrogen production: a techno-economic comparison of photoelectrochemical cells and photovoltaic-electrolysis. Int J Hydrogen Energy. 2020;45:22545–55.
    [22] Ye S, Shi W, Liu Y, Li D, Yin H, Chi H, et al. Unassisted photoelectrochemical cell with multimediator modulation for solar water splitting exceeding 4% solar-to-hydrogen efficiency. J Am Chem Soc. 2021;143:12499–508.
    [23] Zhang Y, Lv H, Zhang Z, Wang L, Wu X, Xu H. Stable unbiased photo-electrochemical overall water splitting exceeding 3% efficiency via covalent triazine framework/metal oxide hybrid photoelectrodes. Adv Mater. 2021;33:e2008264.
    [24] Yang W, Kim JH, Hutter OS, Phillips LJ, Tan J, Park J, et al. Benchmark performance of low-cost Sb2Se3 photocathodes for unassisted solar overall water splitting. Nat Commun. 2020;11:861.
    [25] Li Z, Li C, Liu X, Cao L, Li P, Wei R, et al. Continuous electrical pumping membrane process for seawater lithium mining. Energy Environ Sci. 2021;14:3152–9.
    [26] Hoshino T. Innovative lithium recovery technique from seawater by using world-first dialysis with a lithium ionic superconductor. Desalination. 2015;359:59–63.
    [27] Zhang F, Yang S, Du Y, Li C, Bao J, He P, et al. A low-cost anodic catalyst of transition metal oxides for lithium extraction from seawater. Chem Comm. 2020;56:6396–9.
    [28] Zhao X, Zhang H, Yuan Y, Ren Y, Wang N. Ultra-fast and stable extraction of Li metal from seawater. Chem Comm. 2020;56:1577–80.
    [29] Li Y, Wang R, Li H, Wei X, Feng J, Liu K, et al. Efficient and stable photoelectrochemical seawater splitting with TiO2@g-C3N4 nanorod arrays decorated by Co-Pi. J Phys Chem C. 2015;119:20283–92.
    [30] Liu J, Xu SM, Li Y, Zhang R, Shao M. Facet engineering of WO3 arrays toward highly efficient and stable photoelectrochemical hydrogen generation from natural seawater. Appl Catal B. 2020;264:118540.
    [31] She X, Ma G, Zhang L, Jiao S, Cheng G, Zhang Z. Floc-like CNTs jointed with BixFe1−xVO4 nanoparticles for high efficient and stable photoelectrochemical seawater splitting. J Alloys Compd. 2022;893:162146.
    [32] Li Y, Feng J, Li H, Wei X, Wang R, Zhou A. Photoelectrochemical splitting of natural seawater with α-Fe2O3/WO3 nanorod arrays. Int J Hydrogen Energy. 2016;41:4096–105.
    [33] Guo X, Liu X, Wang L. NiMoOx as a highly protective layer against photocorrosion for solar seawater splitting. J Mater Chem A. 2022;10:1270–7.
    [34] Luo W, Yang Z, Li Z, Zhang J, Liu J, Zhao Z, et al. Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energy Environ Sci. 2011;4:4046–51.
    [35] Verlage E, Hu S, Liu R, Jones RJR, Sun K, Xiang CX, et al. A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem III-V light absorbers protected by amorphous TiO2 films. Energy Environ Sci. 2015;8:3166–72.
    [36] Varadhan P, Fu HC, Kao YC, Horng RH, He JH. An efficient and stable photoelectrochemical system with 9% solar-to-hydrogen conversion efficiency via InGaP/GaAs double junction. Nat Commun. 2019;10:5282.
    [37] Li D, Yang K, Lian J, Yan J, Liu S. Powering the world with solar fuels from photoelectrochemical CO2 reduction: basic principles and recent advances. Adv Energy Mater. 2022;12:2201070.
    [38] Cheng W-H, Richter MH, May MM, Ohlmann J, Lackner D, Dimroth F, et al. Monolithic photoelectrochemical device for direct water splitting with 19% efficiency. ACS Energy Lett. 2018;3:1795–800.
    [39] Jia K, Ma J, Wang J, Liang Z, Ji G, Piao Z, et al. Long-life regenerated LiFePO4 from spent cathode by elevating the d-Band center of Fe. Adv Mater. 2023;35:e2208034.
    [40] Ji G, Wang J, Liang Z, Jia K, Ma J, Zhuang Z, et al. Direct regeneration of degraded lithium-ion battery cathodes with a multifunctional organic lithium salt. Nat Commun. 2023;14:584.
    [41] Wang J, Ma J, Jia K, Liang Z, Ji G, Zhao Y, et al. Efficient extraction of lithium from anode for direct regeneration of cathode materials of spent Li-Ion batteries. ACS Energy Lett. 2022;7:2816–24.
    [42] Ma J, Wang J, Jia K, Liang Z, Ji G, Zhuang Z, et al. Adaptable eutectic salt for the direct recycling of highly degraded layer cathodes. J Am Chem Soc. 2022;144:20306–14.
    [43] Hoseinieh SM, Ashrafizadeh F, Maddahi MH. A comparative investigation of the corrosion behavior of RuO2–IrO2–TiO2 coated titanium anodes in chloride solutions. J Electrochem Soc. 2010;157:E50–6.
    [44] Moon C, Seger B, Vesborg PCK, Hansen O, Chorkendorff I. Wireless photoelectrochemical water splitting using triple-junction solar cell protected by TiO2. Cell Rep Phys Sci. 2020;1:100261.
  • 加载中
图(1)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  1
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-10
  • 录用日期:  2023-06-19
  • 修回日期:  2023-05-19
  • 网络出版日期:  2023-07-10

目录

    /

    返回文章
    返回