Harnessing disordered photonics via multi-task learning towards intelligent four-dimensional light feld sensors
doi: 10.1186/s43074-023-00102-7
Harnessing disordered photonics via multi-task learning towards intelligent four-dimensional light feld sensors
-
Abstract:
The complete description of a continuous-wave light field includes its four fundamental properties: wavelength, polarization, phase and amplitude. However, the simultaneous measurement of a multi-dimensional light field of such four degrees of freedom is challenging in conventional optical systems requiring a cascade of dispersive and polarization elements. In this work, we demonstrate a disordered-photonics-assisted intelligent four-dimensional light field sensor. This is achieved by discovering that the speckle patterns, generated from light scattering in a disordered medium, are intrinsically sensitive to a high-dimension light field given their high structural degrees of freedom. Further, the multi-task-learning deep neural network is leveraged to process the single-shot light-field-encoded speckle images free from any prior knowledge of the complex disordered structures and realizes the high-accuracy recognition of full-Stokes vector, multiple orbital angular momentum (OAM), wavelength and power. The proof-of-concept study shows that the states space of four-dimensional light field spanning as high as 1680=4 (multiple-OAM) \(\times\)2 (OAM power spectra) \(\times\)15 (multiple-wavelength) \(\times\)14 (polarizations) can be well recognized with high accuracy in the chip-integrated sensor. Our work provides a novel paradigm for the design of optical sensors for high-dimension light fields, which can be widely applied in optical communication, holography, and imaging.
-
Key words:
- Disordered photonics /
- Liquid crystals /
- Light field detection /
- Deep learning
-
[1] Liu Y, Zhang X. Metamaterials: a new frontier of science and technology. Chem Soc Rev. 2011;40(5):2494–507. [2] Chen H, Chan CT, Sheng P. Transformation optics and metamaterials. Nat Mater. 2010;9(5):387–96. [3] Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater. 2014;13(2):139–50. [4] Meng Y, Chen Y, Lu L, Ding Y, Cusano A, Fan JA, et al. Optical meta-waveguides for integrated photonics and beyond. Light Sci Appl. 2021;10:235. [5] Sun S, He Q, Hao J, Xiao S, Zhou L. Electromagnetic metasurfaces: physics and applications. Adv Opt Photon. 2019;11(2):380–479. [6] Yu N, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science. 2011;334(6054):333–7. [7] Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater. 2012;11(5):426–31. [8] Song Q, Liu X, Qiu CW, Genevet P. Vectorial metasurface holography. Appl Phys Rev. 2022;9(1):011311. [9] Chen HT, Taylor AJ, Yu N. A review of metasurfaces: physics and applications. Rep Prog Phys. 2016;79(7):076401. [10] Li G, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces. Nat Rev Mater. 2017;2:17010. [11] Chen WT, Zhu AY, Capasso F. Flat optics with dispersion-engineered metasurfaces. Nat Rev Mater. 2020;5(8):604–20. [12] Qu Y, Yi S, Yang L, Yu Z. Multimodal light-sensing pixel arrays. Appl Phys Lett. 2022;121(4):040501. [13] Yuan S, Ma C, Fetaya E, Mueller T, Naveh D, Zhang F, et al. Geometric deep optical sensing. Science. 2023;379(6637):eade1220. [14] Xiong Y, Wang Y, Zhu R, Xu H, Wu C, Chen J, et al. Twisted black phosphorus–based van der Waals stacks for fiber-integrated polarimeters. Sci Adv. 2022;8(18):eabo0375. [15] Ma C, Yuan S, Cheung P, Watanabe K, Taniguchi T, Zhang F, et al. Intelligent infrared sensing enabled by tunable moiré quantum geometry. Nature. 2022;604(7905):266–72. [16] Yang Z, Albrow-Owen T, Cai W, Hasan T. Miniaturization of optical spectrometers. Science. 2021;371(6528):eabe0722. [17] Yi S, Zhou M, Yu Z, Fan P, Behdad N, Lin D, et al. Subwavelength angle-sensing photodetectors inspired by directional hearing in small animals. Nat Nanotechnol. 2018;13(12):1143–7. [18] Ji Z, Liu W, Krylyuk S, Fan X, Zhang Z, Pan A, et al. Photocurrent detection of the orbital angular momentum of light. Science. 2020;368(6492):763–7. [19] Tittl A, Leitis A, Liu M, Yesilkoy F, Choi DY, Neshev DN, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science. 2018;360(6393):1105–9. [20] Wei J, Xu C, Dong B, Qiu CW, Lee C. Mid-infrared semimetal polarization detectors with configurable polarity transition. Nat Photon. 2021;15(8):614–21. [21] Wang Z, Yi S, Chen A, Zhou M, Luk TS, James A, et al. Single-shot on-chip spectral sensors based on photonic crystal slabs. Nat Commun. 2019;10:1020. [22] Pors A, Nielsen MG, Bozhevolnyi SI. Plasmonic metagratings for simultaneous determination of Stokes parameters. Optica. 2015;2(8):716–23. [23] Ni Y, Chen C, Wen S, Xue X, Sun L, Yang Y. Computational spectropolarimetry with a tunable liquid crystal metasurface. eLight. 2022;2:23. [24] Lukosz W. Optical systems with resolving powers exceeding the classical limit. J Opt Soc Am. 1966;56(11):1463–71. [25] Di Francia GT. Degrees of freedom of an image. J Opt Soc Am A. 1969;59(7):799–804. [26] Zuo C, Chen Q. Exploiting optical degrees of freedom for information multiplexing in diffractive neural networks. Light Sci Appl. 2022;11:208. [27] Bellini T, Clark NA, Degiorgio V, Mantegazza F, Natale G. Light-scattering measurement of the nematic correlation length in a liquid crystal with quenched disorder. Phys Rev E. 1998;57:2996–3006. https://doi.org/10.1103/PhysRevE.57.2996. [28] Wiersma DS. Disordered photonics. Nat Photon. 2013;7(3):188–96. [29] Gigan S. Imaging and computing with disorder. Nat Phys. 2022;18(9):980–5. [30] Vandenhende S, Georgoulis S, Van Gansbeke W, Proesmans M, Dai D, Van Gool L. Multi-task learning for dense prediction tasks: A survey. IEEE Trans Pattern Anal Mach Intell. 2021;44(7):3614–33. [31] Thung KH, Wee CY. A brief review on multi-task learning. Multimed Tools Appl. 2018;77(22):29705–25. [32] Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004;13(4):600–12. [33] Ballard Z, Brown C, Madni AM, Ozcan A. Machine learning and computation-enabled intelligent sensor design. Nat Mach Intell. 2021;3(7):556–65. [34] Maguid E, Yannai M, Faerman A, Yulevich I, Kleiner V, Hasman E. Disorder-induced optical transition from spin Hall to random Rashba effect. Science. 2017;358(6369):1411–5. [35] Kendall A, Gal Y, Cipolla R. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: Proc. IEEE Conf. Comput. Vis. Pattern Recog. 2018. p. 7482–7491. [36] Rubin NA, Shi Z, Capasso F. Polarization in diffractive optics and metasurfaces. Adv Opt Photon. 2021;13(4):836–970. [37] Schaefer B, Collett E, Smyth R, Barrett D, Fraher B. Measuring the Stokes polarization parameters. Am J Phys. 2007;75(2):163–8. [38] Wang J, Yang JY, Fazal IM, Ahmed N, Yan Y, Huang H, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photon. 2012;6(7):488–96. [39] Shen Y, Wang X, Xie Z, Min C, Fu X, Liu Q, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci Appl. 2019;8:90. [40] Padgett M, Bowman R. Tweezers with a twist. Nat Photon. 2011;5(6):343–8. [41] Fang X, Ren H, Gu M. Orbital angular momentum holography for high-security encryption. Nat Photon. 2020;14(2):102–8. [42] Ouyang X, Xu Y, Xian M, Feng Z, Zhu L, Cao Y, et al. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing. Nat Photon. 2021;15(12):901–7. [43] Fu S, Zhai Y, Zhang J, Liu X, Song R, Zhou H, Gao C. Universal orbital angular momentum spectrum analyzer for beams. PhotoniX. 2020;1(19):1–12. [44] Raskatla V, Singh B, Patil S, Kumar V, Singh R. Speckle-based deep learning approach for classification of orbital angular momentum modes. J Opt Soc Am A. 2022;39(4):759–65. [45] Liu Y, Zhang Z, Yu P, Wu Y, Wang Z, Li Y, et al. Learning-enabled recovering scattered data from twisted light transmitted through a long standard multimode fiber. Appl Phys Lett. 2022;120(13):131101. [46] Zhao Q, Yu PP, Liu YF, Wang ZQ, Li YM, Gong L. Light field imaging through a single multimode fiber for OAM-multiplexed data transmission. Appl Phys Lett. 2020;116(18):181101. [47] Wang J, Fu S, Shang Z, Hai L, Gao C. Adjusted EfficientNet for the diagnostic of orbital angular momentum spectrum. Opt Lett. 2022;47(6):1419–22. [48] Fu S, Shang Z, Hai L, Huang L, Lv Y, Gao C. Orbital angular momentum comb generation from azimuthal binary phases. Adv Photon Nexus. 2022;1(1):016003. [49] Fang X, Ren H, Li K, Luan H, Hua Y, Zhang Q, et al. Nanophotonic manipulation of optical angular momentum for high-dimensional information optics. Adv Opt Photon. 2021;13(4):772–833. [50] Willner AE, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, et al. Optical communications using orbital angular momentum beams. Adv Opt Photon. 2015;7(1):66–106. [51] Du J, Wang J. Design of on-chip N-fold orbital angular momentum multicasting using V-shaped antenna array. Sci Rep. 2015;5:9662. [52] Ma L-L, Li C-Y, Pan J-T, Ji Y-E, Jiang C, Zheng R, Wang Z-Y, Wang Y, Li B-X, Lu Y-Q. Self-assembled liquid crystal architectures for soft matter photonics. Light Sci Appl. 2022;11:270. [53] Guo Y, Jiang M, Peng C, Sun K, Yaroshchuk O, Lavrentovich O, Wei Q-H. High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals. Adv Mater. 2016;28(12):2353–8. [54] Liu Z, Wang L, Meng Y, He T, He S, Yang Y, et al. All-fiber high-speed image detection enabled by deep learning. Nat Commun. 2022;13:1433. [55] Tang P, Zheng K, Yuan W, Pan T, Xu Y, Fu S, et al. Learning to transmit images through optical speckle of a multimode fiber with high fidelity. Appl Phys Lett. 2022;121(8):081107. [56] Martin OJF, Girard C, Dereux A. Generalized Field Propagator for Electromagnetic Scattering and Light Confinement. Phys Rev Lett. 1995;74:526–9. https://doi.org/10.1103/PhysRevLett.74.526. -