留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Confocal nonlinear optical imaging on hexagonal boron nitride nanosheets

Confocal nonlinear optical imaging on hexagonal boron nitride nanosheets[J]. PhotoniX. doi: 10.1186/s43074-023-00103-6
引用本文: Confocal nonlinear optical imaging on hexagonal boron nitride nanosheets[J]. PhotoniX. doi: 10.1186/s43074-023-00103-6
Gwanjin Lee, Konkada Manattayil Jyothsna, Jonghoo Park, JaeDong Lee, Varun Raghunathan, Hyunmin Kim. Confocal nonlinear optical imaging on hexagonal boron nitride nanosheets[J]. PhotoniX. doi: 10.1186/s43074-023-00103-6
Citation: Gwanjin Lee, Konkada Manattayil Jyothsna, Jonghoo Park, JaeDong Lee, Varun Raghunathan, Hyunmin Kim. Confocal nonlinear optical imaging on hexagonal boron nitride nanosheets[J]. PhotoniX. doi: 10.1186/s43074-023-00103-6

Confocal nonlinear optical imaging on hexagonal boron nitride nanosheets

doi: 10.1186/s43074-023-00103-6

Confocal nonlinear optical imaging on hexagonal boron nitride nanosheets

Funds: This study was supported by the National Research Foundation of Korea (2023R1A2C100531711). H.K. also acknowledges support from the DGIST R&D programs (22-CoENT-01 and 22-BT-06) funded by the Ministry of Science and ICT. V.R. acknowledges support from Department of Science and Technology (DST) Indo-Korea joint research project (INT/Korea/P-44).
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Caldwell JD, Aharonovich I, Cassabois G, Edgar JH, Gil B. Photonics with hexagonal boron nitride. Nat Rev Mater. 2019;4:552–67. https://doi.org/10.1038/s41578-019-0124-1.
    [2] Withers F, Del Pozo-Zamudio O, Mishchenko A, Rooney AP, Gholinia A, Watanabe K, et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat Mater. 2015;14:301–6. https://doi.org/10.1038/nmat4205.
    [3] Xu S, Wu Z, Lu H, Han Y, Long G, Chen X, et al. Universal low-temperature Ohmic contacts for quantum transport in transition metal dichalcogenides. 2DMater. 2016;3:021007. https://doi.org/10.1088/2053-1583/3/2/021007.
    [4] Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, et al. Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol. 2010;5:722–6. https://doi.org/10.1038/nnano.2010.172.
    [5] Wang L, Meric I, Huang PY, Gao Q, Gao Y, Tran H, et al. One-dimensional electrical contact to a two-dimensional material. Science. 2013;342:614–7. https://doi.org/10.1126/science.1244358.
    [6] Jia Y, Zhao H, Guo Q, Wang X, Wang H, Xia F. Tunable plasmon-phonon polaritons in layered graphene-hexagonal boron nitride heterostructures. ACS Photonics. 2015;2:907–12. https://doi.org/10.1021/acsphotonics.5b00099.
    [7] Basov DN, Fogler MM, García de Abajo FJ. Polaritons in van der Waals materials. Science. 2016;354:6309. https://doi.org/10.1126/science.aag1992.
    [8] Dai S, Ma Q, Liu MK, Andersen T, Fei Z, Goldflam MD, et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat Nanotechnol. 2015;10:682–6. https://doi.org/10.1038/nnano.2015.131.
    [9] Low T, Chaves A, Caldwell JD, Kumar A, Fang NX, Avouris P, et al. Polaritons in layered two-dimensional materials. Nat Mater. 2017;16:182–94. https://doi.org/10.1038/nmat4792.
    [10] Bourrellier R, Meuret S, Tararan A, Stéphan O, Kociak M, Tizei LHG, Zobelli A. Bright UV single photon emission at point defects in h-BN. Nano Lett. 2016;16:4317–21. https://doi.org/10.1021/acs.nanolett.6b01368.
    [11] Kim S, Fröch JE, Christian J, Straw M, Bishop J, Totonjian D, et al. Photonic crystal cavities from hexagonal boron nitride. Nat Commun. 2018;9:2623. https://doi.org/10.1038/s41467-018-05117-4.
    [12] Song S-B, Yoon S, Kim SY, Yang S, Seo S-Y, Cha S, et al. Deep-ultraviolet electroluminescence and photocurrent generation in graphene/hBN/graphene heterostructures. Nat Commun. 2021;12:7134. https://doi.org/10.1038/s41467-021-27524-w.
    [13] Tran TT, Bray K, Ford MJ, Toth M, Aharonovich I. Quantum emission from hexagonal boron nitride monolayers. Nat Nanotechnol. 2016;11:37–41. https://doi.org/10.1038/nnano.2015.242.
    [14] Tran TT, Elbadawi C, Totonjian D, Lobo CJ, Grosso G, Moon H, et al. Robust multicolor single photon emission from point defects in hexagonal boron nitride. ACS Nano. 2016;10:7331–8. https://doi.org/10.1021/acsnano.6b03602.
    [15] Jungwirth NR, Calderon B, Ji Y, Spencer MG, Flatté ME, Fuchs GD. Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride. Nano Lett. 2016;16:6052–7. https://doi.org/10.1021/acs.nanolett.6b01987.
    [16] Trovatello C, Marini A, Xu X, Lee C, Liu F, Curreli N, et al. Optical parametric amplification by monolayer transition metal dichalcogenides. Nat Photonics. 2021;15:6–10. https://doi.org/10.1038/s41566-020-00728-0.
    [17] Li Y, Rao Y, Mak KF, You Y, Wang S, Dean CR, Heinz TF. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 2013;13:3329–33. https://doi.org/10.1021/nl401561r.
    [18] Watanabe K, Taniguchi T, Kanda H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater. 2004;3:404–9. https://doi.org/10.1038/nmat1134.
    [19] Museur L, Brasse G, Pierret A, Maine S, Attal-Tretout B, Ducastelle F, et al. Exciton optical transitions in a hexagonal boron nitride single crystal. Phys Stat Solidi Rapid Res Lett. 2011;5:214–6. https://doi.org/10.1002/pssr.201105190.
    [20] Cassabois G, Valvin P, Gil B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat Photonics. 2016;10:262–6. https://doi.org/10.1038/nphoton.2015.277.
    [21] Popkova AA, Antropov IM, Fröch JE, Kim S, Aharonovich I, Bessonov VO, et al. Optical third-harmonic generation in hexagonal boron nitride thin films. ACS Photonics. 2021;8:824–31. https://doi.org/10.1021/acsphotonics.0c01759.
    [22] Ling J, Miao X, Sun Y, Feng Y, Zhang L, Sun Z, Ji M. Vibrational imaging and quantification of two-dimensional hexagonal boron nitride with stimulated raman scattering. ACS Nano. 2019;13:14033–40. https://doi.org/10.1021/acsnano.9b06337.
    [23] Lafetá L, Cadore AR, Mendes-De-Sa TG, Watanabe K, Taniguchi T, Campos LC, et al. Anomalous nonlinear optical response of graphene near phonon resonances. Nano Lett. 2017;17:3447–51. https://doi.org/10.1021/acs.nanolett.7b00329.
    [24] Armstrong JA, Bloembergen N, Ducuing J, Pershan PS. Interactions between light waves in a nonlinear dielectric. Phys Rev. 1962;127:1918–39. https://doi.org/10.1103/PhysRev.127.1918.
    [25] Cheng J-X, Volkmer A, Xie XS. Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy. J Opt Soc Am B. 2002;19:1363–75. https://doi.org/10.1364/josab.19.001363.
    [26] Hempel F, Reitzig S, Rüsing M, Eng LM. Broadband coherent anti-stokes raman scattering for crystalline materials. Phys Rev B. 2021;104:224308. https://doi.org/10.1103/PhysRevB.104.224308.
    [27] Dhakal KP, Kim H, Lee S, Kim Y, Lee JD, Ahn JH. Probing the upper band gap of atomic rhenium disulfide layers. Light Sci Appl. 2018;7:98. https://doi.org/10.1038/s41377-018-0100-3.
    [28] Hendry E, Hale PJ, Moger J, Savchenko AK, Mikhailov SA. Coherent nonlinear optical response of graphene. Phys Rev Lett. 2010;105:097401. https://doi.org/10.1103/PhysRevLett.105.097401.
    [29] Lotem H, Lynch RT, Bloembergen N. Interference between Raman resonances in four-wave difference mixing. Phys Rev A. 1976;14:1748–55. https://doi.org/10.1103/physreva.14.1748.
    [30] Gorbachev RV, Riaz I, Nair RR, Jalil R, Britnell L, Belle BD, et al. Hunting for monolayer boron nitride: optical and Raman signatures. Small. 2011;7:465–8. https://doi.org/10.1002/smll.201001628.
    [31] Sönnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J, Wilson O, Mulvaney P. Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett. 2002;88:077402. https://doi.org/10.1103/PhysRevLett.88.077402.
    [32] Lee YJ, Cicerone MT. Vibrational dephasing time imaging by time-resolved broadband coherent anti-Stokes Raman scattering microscopy. Appl Phys Lett. 2008;92:041108. https://doi.org/10.1063/1.2838750.
    [33] Lee YJ, Parekh SH, Fagan JA, Cicerone MT. Phonon dephasing and population decay dynamics of the G-band of semiconducting single-wall carbon nanotubes. Phys Rev B. 2010;82:165432. https://doi.org/10.1103/PhysRevB.82.165432.
    [34] Koivistoinen J, Myllyperkiö P, Pettersson M. Time-resolved coherent anti-stokes raman scattering of graphene: dephasing dynamics of optical phonon. J Phys Chem Lett. 2017;8:4108–12. https://doi.org/10.1021/acs.jpclett.7b01711.
    [35] Xu Q-H, Ma Y-Z, Fleming GR. Heterodyne detected transient grating spectroscopy in resonant and non-resonant systems using a simplified diffractive optics method. Chem Phys Lett. 2001;338:254–62. https://doi.org/10.1016/s0009-2614(01)00281-0.
    [36] Seferyan HY, Nasr MB, Senekerimyan V, Zadoyan R, Collins P, Apkarian VA. Transient grating measurements of excitonic dynamics in single-walled carbon nanotubes: The dark excitonic bottleneck. Nano Lett. 2006;6:1757–60. https://doi.org/10.1021/nl061646d.
    [37] Zeytunyan A, Crampton KT, Zadoyan R, Apkarian VA. Supercontinuum-based three-color three-pulse time-resolved coherent anti-Stokes Raman scattering. Opt Express. 2015;23:24019–28. https://doi.org/10.1364/OE.23.024019.
    [38] Lee G, Jyothsna KM, Lim H, Park J, Lee J, Raghunathan V, Kim H. Sub 100 nm resolution confocal focus-engineered coherent anti-Stokes Raman scattering microscopy under non-degenerate pumping condition. Opt Lasers Eng. 2022;158:107142. https://doi.org/10.1016/j.optlaseng.2022.107142.
    [39] Beams R, Woodcock JW, Gilman JW, Stranick SJ. Phase mask-based multimodal superresolution microscopy. Photonics. 2017;4:39. https://doi.org/10.3390/photonics4030039.
    [40] Kim H, Bryant GW, Stranick SJ. Superresolution four-wave mixing microscopy. Opt Express. 2012;20:6042–51. https://doi.org/10.1364/OE.20.006042.
    [41] Hashimoto M, Araki T. Three-dimensional transfer functions of coherent anti-Stokes Raman scattering microscopy. J Opt Soc Am A. 2001;18:771–6. https://doi.org/10.1364/JOSAA.18.000771.
    [42] Gong L, Zheng W, Ma Y, Huang Z. Higher-order coherent anti-Stokes Raman scattering microscopy realizes label-free super-resolution vibrational imaging. Nat Photonics. 2020;14:115–22. https://doi.org/10.1038/s41566-019-0535-y.
    [43] Mehravar S, Cromey B, Kieu K. Characterization of multiphoton microscopes by the nonlinear knife-edge technique. Appl Opt. 2020;59:G219–24. https://doi.org/10.1364/AO.391881.
    [44] Brizuela F, Wang Y, Brewer CA, Pedaci F, Chao W, Anderson EH, et al. Microscopy of extreme ultraviolet lithography masks with 13.2 nm tabletop laser illumination. Opt Lett. 2009;34:271–3. https://doi.org/10.1364/ol.34.000271.
    [45] Novotny L, Hecht B. Principles of nano-optics. Ch. 4. Cambridge University Press; 2006.
    [46] Latychevskaia T. Lateral and axial resolution criteria in incoherent and coherent optics and holography, near- and far-field regimes. Appl Opt. 2019;58:3597–603. https://doi.org/10.1364/AO.58.003597.
    [47] Potma EO, Evans CL, Xie XS. Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging. Opt Lett. 2006;31:241–3. https://doi.org/10.1364/ol.31.000241.
    [48] Freudiger CW, Min W, Saar BG, Lu S, Holtom GR, He C, et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science. 2008;322:1857–61. https://doi.org/10.1126/science.1165758.
    [49] Virga A, Ferrante C, Batignani G, De Fazio D, Nunn ADG, Ferrari AC, et al. Coherent anti-Stokes Raman spectroscopy of single and multi-layer graphene. Nat Commun. 2019;10:3658. https://doi.org/10.1038/s41467-019-11165-1.
    [50] Evans CL, Xie XS. Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu Rev Anal Chem. 2008;1:883–909. https://doi.org/10.1146/annurev.anchem.1.031207.112754.
    [51] Ariunbold GO, Altangerel N. Quantitative interpretation of time-resolved coherent anti-Stokes Raman spectroscopy with all Gaussian pulses. J Raman Spectrosc. 2017;48:104–7. https://doi.org/10.1002/jrs.4987.
    [52] Zhang X, Li Y, Mu W, Bai W, Sun X, Zhao M, et al. Advanced tape-exfoliated method for preparing large-area 2D monolayers: a review. 2D Mater. 2021;8:032002.
    [53] Song J, Kam F-Y, Png R-Q, Seah W-L, Zhuo J-M, Lim G-K, et al. A general method for transferring graphene onto soft surfaces. Nat Nanotechnol. 2013;8:356–62. https://doi.org/10.1038/nnano.2013.63.
    [54] The Elk Code. https://elk.sourceforge.io/.
    [55] Tran F, Blaha P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys Rev Lett. 2009;102:226401. https://doi.org/10.1103/PhysRevLett.102.226401.
    [56] Schuster R, Habenicht C, Ahmad M, Knupfer M, Büchner B. Direct observation of the lowest indirect exciton state in the bulk of hexagonal boron nitride. Phys Rev B. 2018;97:041201(R). https://doi.org/10.1103/PhysRevB.97.041201.
    [57] Kim J-H, Van Le Q, Nguyen TP, Lee TH, Jang HW, Yun WS, et al. Graphene-mediated enhanced Raman scattering and coherent light lasing from CsPbI3 perovskite nanorods. Nano Energy. 2020;70:104497. https://doi.org/10.1016/j.nanoen.2020.104497.
  • 加载中
图(1)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  0
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-08
  • 录用日期:  2023-08-02
  • 修回日期:  2023-07-11
  • 网络出版日期:  2023-08-28

目录

    /

    返回文章
    返回