Thin flm-based colorful radiative cooler using difuse refection for color display
doi: 10.1186/s43074-023-00104-5
Thin flm-based colorful radiative cooler using difuse refection for color display
-
Abstract:
Colorful radiative coolers (CRCs) can be widely applied for energy sustainability especially and meet aesthetic purposes simultaneously. Here, we propose a high-efficiency CRC based on thin film stacks and engineered diffuse reflection unit, which brings out 7.1 °C temperature difference compared with ambient under ~ 700 W·m−2 solar irradiation. Different from analogous schemes, the proposed CRCs produce vivid colors by diffuse reflection and rest of the incident light is specular-reflected without being absorbed. Adopting the structure of TiO2/SiO2 multilayer stack, the nanophotonic radiative cooler shows extra low absorption across the solar radiation waveband. Significant radiative cooling performance can be achieved with the emissivity reaching 95.6% in the atmosphere transparent window (8–13 μm). Moreover, such CRC can be fabricated on flexible substrates, facilitating various applications such as the thermal management of cars or wearables. In conclusion, this work demonstrates a new approach for color display with negligible solar radiation absorption and paves the way for prominent radiative cooling.
-
Key words:
- Radiative cooling /
- Color filter /
- Thin film /
- Energy sustainability
-
[1] Harrison AW, Walton MR. Radiative cooling of TiO2 white paint. Sol Energy. 1978;20(2):185–8. [2] Granqvist CG, Hjortsberg A. Surfaces for radiative cooling: silicon monoxide films on aluminum. Appl Phys Lett. 1980;36(2):139–41. [3] Zhu L, Raman A, Fan S. Color-preserving daytime radiative cooling. Appl Phys Lett. 2013;103:223902. [4] Raman AP, Anoma MA, Zhu L, Rephaeli E, Fan S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature. 2014;515:540–4. [5] Chen Z, Zhu L, Raman A, Fan S. Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle. Nat Commun. 2016;7:13729. [6] Hossain MM, Gu M. Radiative cooling: principles, progress, and potentials. Adv Sci. 2016;3(7):1500360. [7] Zhai Y, Ma Y, David SN, Zhao D, Lou R, Tan G, Yang R, Yin X. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science. 2017;355(6329):1062–6. [8] Ono M, Chen K, Li W, Fan S. Self-adaptive radiative cooling based on phase change materials. Opt Express. 2018;26(18):A777–87. [9] Sun K, Riede CA, Wang Y, Urbani A, Simeoni M, Mengali S, Zalkovskij M, Bilenberg B, de Groot CH, Muskens OL. Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft. ACS Photonics. 2018;5(2):495–501. [10] Yuan H, Yang C, Zheng X, Mu W, Wang Z, Yuan W, Zhang Y, Chen C, Liu X, Shen W. Effective, angle-independent radiative cooler based on one-dimensional photonic crystal. Opt Express. 2018;26(21):27885–93. [11] Li W, Shi Y, Chen Z, Fan S. Photonic thermal management of coloured objects. Nat Commun. 2018;9:4240. [12] Lee G, Kim Y, Kim H, Yoo Y, Song Y. Colored, daytime radiative coolers with thin-film resonators for aesthetic purposes. Adv Opt Mater. 2018;6(22):1800707. [13] Zhao D, Aili A, Zhai Y, Xu S, Tan G, Yin X, Yang R. Radiative sky cooling: fundamental principles, materials, and applications. Appl Phys Rev. 2019;6:021306. [14] Zhao B, Hu M, Ao X, Chen N, Pei G. Radiative cooling: a review of fundamentals, materials, applications, and prospects. Appl Energy. 2019;236:489–513. [15] Sheng C, An Y, Du J, Li X. Colored radiative cooler under optical Tamm resonance. ACS Photonics. 2019;6(10):2545–52. [16] Lozano LM, Hong S, Huang Y, Zandavi H, El Aoud YA, Tsurimaki Y, Zhou J, Xu Y, Osgood RM, Chen G, Boriskina SV. Optical engineering of polymer materials and composites for simultaneous color and thermal management. Opt Mater Express. 2019;9(5):1990–2005. [17] Yin X, Yang R, Tan G, Fan S. Terrestrial radiative cooling: Using the cold universe as a renewable and sustainable energy source. Science. 2020;370(6518):786–91. [18] Li Z, Chen Q, Song Y, Zhu B, Zhu J. Fundamentals, materials, and applications for daytime radiative cooling. Adv Mater Technol. 2020;5(5):1901007. [19] Han RPS, Cao A, Yang Y. Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling. Sci Adv. 2020;6(17):eaaz5413. [20] Yalçın R, Blandre E, Joulain K, Drévillon J. Colored radiative cooling coatings with nanoparticles. ACS Photonics. 2020;7(5):1312–22. [21] Kim H, Im E, Lee S. Colloidal photonic assemblies for colorful radiative cooling. Langmuir. 2020;36(23):6589–96. [22] Chen Y, Mandal J, Li W, Smith-Washington A, Tsai CC, Huang W, Shrestha S, Yu N, Han RPS, Cao A, Yang Y. Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling. Sci Adv. 2020;6(17):eaaz5413. [23] Zeng S, Pian S, Su M, Wang Z, Wu M, Liu X, Chen M, Xiang Y, Wu J, Zhang M, Cen Q, Tang Y, Zhou X, Huang Z, Wang R, Tunuhe A, Sun X, Xia Z, Tian M, Chen M, Ma X, Yang L, Zhou J, Zhou H, Yang Q, Li X, Ma Y, Tao G. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science. 2021;373(6555):692–6. [24] Luo H, Zhu Y, Xu Z, Hong Y, Ghosh P, Kaur S, Wu M, Yang C, Qiu M, Li Q. Outdoor personal thermal management with simultaneous electricity generation. Nano Lett. 2021;21(9):3879–86. [25] Yoon TY, Son S, Min S, Chae D, Woo HY, Chae J, Lim H, Shin J, Paik T, Lee H. Colloidal deposition of colored daytime radiative cooling films using nanoparticle-based inks. Mater Today Phys. 2021;21:100510. [26] Zhu Y, Luo H, Yang C, Qin B, Ghosh P, Kaur S, Shen W, Qiu M, Belov P, Li Q. Color-preserving passive radiative cooling for an actively temperature-regulated enclosure. Light Sci Appl. 2022;11(1):1–9. [27] Yu S, Zhang Q, Wang Y, Lv Y, Ma R. Photonic-structure colored radiative coolers for daytime subambient cooling. Nano Lett. 2022;22(12):4925–32. [28] Chen Y, Mandal J, Li W, Smith-Washington A, Tsai CC, Huang W, Shrestha S, Yu N, Xu J, Wan R, Xu W, Ma Z, Cheng X, Yang R, Yin X. Colored radiative cooling coatings using phosphor dyes. Mater Today Nano. 2022;19:100239. [29] Zhu W, Droguet B, Shen Q, Zhang Y, Parton TG, Shan X, Parker RM, De Volder MFL, Deng T, Vignolini S, Li T. Structurally colored radiative cooling cellulosic films. Adv Sci. 2022;9(26):2202061. [30] Liu H, Kang H, Jia X, Qiao X, Qin W, Wu X. Commercial-like self-cleaning colored ZrO2-based bilayer coating for remarkable daytime sub-ambient radiative cooling. Adv Mat Tec. 2022;7(10):2101583. [31] Guan Q, Raza A, Mao SS, Vega LF, Zhang T. Machine learning-enabled inverse design of radiative cooling film with on-demand transmissive color. ACS Photonics. 2023;10(3):715–26. [32] Zhou L, Rada J, Song H, Ooi B, Yu Z, Gan Q. Colorful surfaces for radiative cooling. J Photonics Energy. 2021;11(4):042107. [33] Yang C, Ji C, Shen W, Lee K-T, Zhang Y, Liu X, Guo LJ. Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption. ACS Photonics. 2016;3(4):590–6. [34] Yang C, Wen J, Chen X, Luo H, Zhu Y, Wang H, Zheng T, Zhang Y, Shen W. Wavelength-Selective light trapping with nanometer-thick metallic coating. Adv Photonics Res. 2022;3(7):2100338 [35] Sergeant NP, Pincon O, Agrawal M, Peumans P. Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks. Opt Express. 2009;17(25):22800–12. [36] Zhu P, Guo LJ. High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack. Appl Phys Lett. 2012;101(24):241116. [37] Chen F, Wang S, Liu X, Ji R, Yu L, Chen X, Lu W. High performance colored selective absorbers for architecturally integrated solar applications. J Mater Chem A. 2015;3(14):7353–60. [38] Ji C, Lee KT, Xu T, Zhou J, Park HJ, Guo LJ. Engineering light at the nanoscale: structural color filters and broadband perfect absorbers. Adv Opt Mater. 2017;5(20):1700368. -