留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Integrated heterodyne laser Doppler vibrometer based on stress-optic frequency shift in silicon nitride

Integrated heterodyne laser Doppler vibrometer based on stress-optic frequency shift in silicon nitride[J]. PhotoniX. doi: 10.1186/s43074-023-00105-4
引用本文: Integrated heterodyne laser Doppler vibrometer based on stress-optic frequency shift in silicon nitride[J]. PhotoniX. doi: 10.1186/s43074-023-00105-4
Adam Raptakis, Lefteris Gounaridis, Jörn P. Epping, Thi Lan Anh Tran, Thomas Aukes, Moritz Kleinert, Madeleine Weigel, Marco Wolfer, Alexander Draebenstedt, Christos Tsokos, Panos Groumas, Efstathios Andrianopoulos, Nikos Lyras, Dimitrios Nikolaidis, Elias Mylonas, Nikolaos Baxevanakis, Roberto Pessina, Erik Schreuder, Matthijn Dekkers, Volker Seyfried, Norbert Keil, René G. Heideman, Hercules Avramopoulos, Christos Kouloumentas. Integrated heterodyne laser Doppler vibrometer based on stress-optic frequency shift in silicon nitride[J]. PhotoniX. doi: 10.1186/s43074-023-00105-4
Citation: Adam Raptakis, Lefteris Gounaridis, Jörn P. Epping, Thi Lan Anh Tran, Thomas Aukes, Moritz Kleinert, Madeleine Weigel, Marco Wolfer, Alexander Draebenstedt, Christos Tsokos, Panos Groumas, Efstathios Andrianopoulos, Nikos Lyras, Dimitrios Nikolaidis, Elias Mylonas, Nikolaos Baxevanakis, Roberto Pessina, Erik Schreuder, Matthijn Dekkers, Volker Seyfried, Norbert Keil, René G. Heideman, Hercules Avramopoulos, Christos Kouloumentas. Integrated heterodyne laser Doppler vibrometer based on stress-optic frequency shift in silicon nitride[J]. PhotoniX. doi: 10.1186/s43074-023-00105-4

Integrated heterodyne laser Doppler vibrometer based on stress-optic frequency shift in silicon nitride

doi: 10.1186/s43074-023-00105-4

Integrated heterodyne laser Doppler vibrometer based on stress-optic frequency shift in silicon nitride

Funds: The work was supported by the EU Horizon 2020 research and innovation program under grant agreement 3PEAT (Contract No. 780502).
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Rothberg SJ, et al. An international review of laser Doppler vibrometry: Making light work of vibration measurement. Opt Lasers Eng. 2017;99:11–22. https://doi.org/10.1016/j.optlaseng.2016.10.023.
    [2] Yang J, Yang T, Wang Z, Jia D, Ge C. A novel method of measuring instantaneous frequency of an ultrafast frequency modulated continuous-wave laser. Sensors. 2020;20(14):3834. https://doi.org/10.3390/s20143834.
    [3] Rogers C, et al. A universal 3D imaging sensor on a silicon photonics platform. Nature. 2021;590(7845):256–61. https://doi.org/10.1038/s41586-021-03259-y.
    [4] Park Y, Cho K. Heterodyne interferometer scheme using a double pass in an acousto-optic modulator. Opt Lett. 2011;36(3):331. https://doi.org/10.1364/OL.36.000331.
    [5] Mychkovsky AG, Chang NA, Ceccio SL. Bragg cell laser intensity modulation: effect on laser Doppler velocimetry measurements. Appl Opt. 2009;48(18):3468. https://doi.org/10.1364/AO.48.003468.
    [6] Toda H, Haruna M, Nishihara H. Integrated-optic heterodyne interferometer for displacement measurement. J Lightwave Technol. 1991;9(5):683–7. https://doi.org/10.1109/50.79546.
    [7] Li Y, Meersman S, Baets R. Optical frequency shifter on SOI using thermo-optic serrodyne modulation. In 7th IEEE International Conference on Group IV Photonics. Beijing: IEEE; 2010. p. 75–77. https://doi.org/10.1109/GROUP4.2010.5643423.
    [8] Li Y, et al. Heterodyne laser Doppler vibrometers integrated on silicon-on-insulator based on serrodyne thermo-optic frequency shifters. Appl Opt. 2013;52(10):2145. https://doi.org/10.1364/AO.52.002145.
    [9] Cole DB, Sorace-Agaskar C, Moresco M, Leake G, Coolbaugh D, Watts MR. Integrated heterodyne interferometer with on-chip modulators and detectors. Opt Lett. 2015;40(13):3097. https://doi.org/10.1364/OL.40.003097.
    [10] Li Y, Dieussaert E, Baets R. Miniaturization of laser doppler vibrometers—a review. Sensors. 2022;22(13):4735. https://doi.org/10.3390/s22134735.
    [11] Izutsu M, Shikama S, Sueta T. Integrated optical SSB modulator/frequency shifter. IEEE J Quantum Electron. 1981;17(11):2225–7. https://doi.org/10.1109/JQE.1981.1070678.
    [12] Shimotsu S, et al. Single side-band modulation performance of a LiNbO 3 integrated modulator consisting of four-phase modulator waveguides. IEEE Photonics Technol Lett. 2001;13(4):364–6. https://doi.org/10.1109/68.917854.
    [13] Yamazaki H, Saida T, Goh T, Mori A, Mino S. Dual-carrier IQ modulator with a complementary frequency shifter. Opt Express. 2011;19(26):B69. https://doi.org/10.1364/OE.19.000B69.
    [14] Kodigala A, et al. Silicon Photonic Single-Sideband Generation with Dual-Parallel Mach-Zehnder Modulators. In Conference on Lasers and Electro-Optics. San Jose, California; 2019. https://doi.org/10.1364/CLEO_SI.2019.STh4N.6.
    [15] Hasan GM, Hasan M, Hall TJ. Performance analysis of a multi-function mach-zehnder interferometer based photonic architecture on SOI acting as a frequency shifter. Photonics. 2021;8(12):561. https://doi.org/10.3390/photonics8120561.
    [16] Alexander K, et al. Nanophotonic Pockels modulators on a silicon nitride platform. Nat Commun. 2018;9(1):3444. https://doi.org/10.1038/s41467-018-05846-6.
    [17] Lauermann M, et al. Integrated optical frequency shifter in silicon-organic hybrid (SOH) technology. Opt Express. 2016;24(11):11694. https://doi.org/10.1364/OE.24.011694.
    [18] Reed GT, et al. Recent breakthroughs in carrier depletion based silicon optical modulators. Nanophotonics. 2014;3(4–5):229–45. https://doi.org/10.1515/nanoph-2013-0016.
    [19] Spuesens T, et al. Integrated Optical Frequency Shifter on a Silicon Platform. In Conference on Lasers and Electro-Optics. San Jose, California; 2016. https://doi.org/10.1364/CLEO_SI.2016.SF2G.1.
    [20] Yamaguchi Y, Kanno A, Kawanishi T, Izutsu M, Nakajima H. Pure Single-Sideband Modulation Using High Extinction-Ratio Parallel Mach-Zehnder Modulator with Third-Order Harmonics Superposition Technique. In CLEO: 2015. San Jose, California: 2015. p. JTh2A.40. https://doi.org/10.1364/CLEO_AT.2015.JTh2A.40.
    [21] Rubiyanto A, Herrmann H, Ricken R, Tian F, Sohler W. Integrated optical heterodyne interferometer in lithium niobate. J Nonlinear Optic Phys Mat. 2001;10(02):163–8. https://doi.org/10.1142/S0218863501000516.
    [22] Edinger P, et al. Silicon photonic microelectromechanical phase shifters for scalable programmable photonics. Opt Lett. 2021;46(22):5671. https://doi.org/10.1364/OL.436288.
    [23] Jin W, Polcawich RG, Morton PA, Bowers JE. Piezoelectrically tuned silicon nitride ring resonator. 2018:14.
    [24] Huang M. Stress effects on the performance of optical waveguides. Int J Solids Struct. 2003;40(7):1615–32. https://doi.org/10.1016/S0020-7683(03)00037-4.
    [25] Donati S, Barbieri L, Martini G. Piezoelectric actuation of silica-on-silicon waveguide devices. IEEE Photon Technol Lett. 1998;10(10):1428–30. https://doi.org/10.1109/68.720283.
    [26] Tsia KK, Fathpour S, Jalali B. Electrical tuning of birefringence in silicon waveguides. Appl Phys Lett. 2008;92(6):061109. https://doi.org/10.1063/1.2883925.
    [27] Sebbag Y, et al. Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film. Appl Phys Lett. 2012;100(14):141107. https://doi.org/10.1063/1.3701587.
    [28] Schriever C, Bohley C, Schilling J, Wehrspohn RB. Strained silicon photonics. Materials. 2012;5(12):889–908. https://doi.org/10.3390/ma5050889.
    [29] Hosseini N, et al. Stress-optic modulator in TriPleX platform using a piezoelectric lead zirconate titanate (PZT) thin film. Opt Express. 2015;23(11):14018. https://doi.org/10.1364/OE.23.014018.
    [30] Epping JP, et al. Ultra-low-power stress-optics modulator for microwave photonics. Presented at the SPIE OPTO. San Francisco, California: 2017. 101060F. https://doi.org/10.1117/12.2266170.
    [31] Epping JP, et al. Ultra-low-power stress-based integrated photonic phase actuator. 2018:3.
    [32] Everhardt A, et al. Ultra-low power stress-based phase actuation in TriPleX photonic circuits. In Integrated Optics: Devices, Materials, and Technologies XXVI. San Francisco: 2022. p. 11.  https://doi.org/10.1117/12.2609405.
    [33] Casset F, et al. Stress optic modulator using thin-film PZT for LIDAR applications. In 2019 IEEE SENSORS, Montreal: IEEE; 2019. p 1–4. https://doi.org/10.1109/SENSORS43011.2019.8956537.
    [34] Wang J, Liu K, Harrington MW, Rudy RQ, Blumenthal DJ. Silicon nitride stress-optic microresonator modulator for optical control applications. Opt Express. 2022;30(18):31816. https://doi.org/10.1364/OE.467721.
    [35] van der Slot PJM, Porcel MAG, Boller K-J. Surface acoustic waves for acousto-optic modulation in buried silicon nitride waveguides. Opt Express. 2019;27(2):1433. https://doi.org/10.1364/OE.27.001433.
    [36] Ansari I, et al. Light modulation in Silicon photonics by PZT actuated acoustic waves. ArXiv211207988 Phys. 2021. Accessed 30 Jan 2022. Available: http://arxiv.org/abs/2112.07988
    [37] Tsokos C, et al. True time delay optical beamforming network based on hybrid inp-silicon nitride integration. J Lightwave Technol. 2021;39(18):5845–54. https://doi.org/10.1109/JLT.2021.3089881.
    [38] Nguyen MD, Tiggelaar R, Aukes T, Rijnders G, Roelof G. Wafer-scale growth of highly textured piezoelectric thin films by pulsed laser deposition for micro-scale sensors and actuators. J Phys Conf Ser. 2017;922:012022. https://doi.org/10.1088/1742-6596/922/1/012022.
    [39] Nguyen MD, Houwman EP, Dekkers M, Rijnders G. Strongly enhanced piezoelectric response in lead zirconate titanate films with vertically aligned columnar grains. ACS Appl Mater Interfaces. 2017;9(11):9849–61. https://doi.org/10.1021/acsami.6b16470.
    [40] de Felipe D, et al. Recent developments in polymer-based photonic components for disruptive capacity upgrade in data centers. J Light Technol. 2017;35(4):683–9. https://doi.org/10.1109/JLT.2016.2611240.
    [41] Zhang Z, et al. Hybrid photonic integration on a polymer platform. MDPI Photonics. 2015;2(3):1005–26.
    [42] Katopodis V, et al. Multi-flow transmitter based on polarization and optical carrier management on optical polymers. IEEE Photonics Technol Lett. 2016;28(11):1169–72.
    [43] Katopodis V, et al. Polymer enabled 100 Gbaud connectivity for datacom applications. Elsevier Optics Commun. 2016;362:13–21.
    [44] Johansmann M, Siegmund G, Pineda M. Targeting the Limits of Laser Doppler Vibrometry. 2005.
    [45] Siegmund G. Sources of measurement error in laser Doppler vibrometers and proposal for unified specifications. Presented at the Eighth International Conference on Vibration Measurements by Laser Techniques. Ancona: Advances and Applications; 2008. 70980Y. https://doi.org/10.1117/12.803150.
    [46] Li Y, Meersman S, Baets R. Realization of fiber-based laser Doppler vibrometer with serrodyne frequency shifting. Appl Opt. 2011;50(17):2809. https://doi.org/10.1364/AO.50.002809.
    [47] Johnson LM, Cox CH. Serrodyne optical frequency translation with high sideband suppression. J Light Technol. 1988;6(1):109–12. https://doi.org/10.1109/50.3974.
    [48] Roeloffzen CGH, et al. Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview. IEEE J Sel Top Quantum Electron. 2018;24(4):1–21. https://doi.org/10.1109/JSTQE.2018.2793945.
    [49] Solmates B.V., website: http://www.solmates-pld.com
    [50] Blank DHA, Dekkers M, Rijnders G. Pulsed laser deposition in Twente: from research tool towards industrial deposition. J Phys Appl Phys. 2014;47(3);034006. https://doi.org/10.1088/0022-3727/47/3/034006.
    [51] Kleinert M, et al. Photonic integrated devices and functions on hybrid polymer platform. Presented at the SPIE OPTO. San Francisco, California; 2017. p. 100981A. https://doi.org/10.1117/12.2256987.
    [52] Maese-Novo A, et al. Thermally optimized variable optical attenuators on a polymer platform. Appl Opt. 2015;54(3):569. https://doi.org/10.1364/AO.54.000569.
    [53] Polytec GmbH., website: https://www.polytec.com/
    [54] Dekkers M, et al. The significance of the piezoelectric coefficient d 31,eff determined from cantilever structures. J Micromechanics Microengineering. 2013;23(2):025008. https://doi.org/10.1088/0960-1317/23/2/025008.
    [55] Shekhar S, et al. Silicon Photonics - Roadmapping the Next Generation. 2023.
    [56] Raptakis A, et al. Fully integrated Laser Doppler Vibrometer (LDV) based on hybrid 3D integration of silicon nitride and polymer photonic circuits with operation in the kHz regime. In Garcia-Blanco SM, Cheben P, editors. Integrated Optics: Devices, Materials, and Technologies XXVII. San Francisco: SPIE; 2023. p. 15. https://doi.org/10.1117/12.2650027.
    [57] Boller K-J, et al. Hybrid Integrated Semiconductor Lasers with Silicon Nitride Feedback Circuits. Photonics. 2019;7(1):4. https://doi.org/10.3390/photonics7010004.
  • 加载中
图(1)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  0
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-28
  • 录用日期:  2023-08-08
  • 修回日期:  2023-08-01
  • 网络出版日期:  2023-09-21

目录

    /

    返回文章
    返回