Nonlinear plasmonics: second-harmonic generation and multiphoton photoluminescence
doi: 10.1186/s43074-023-00106-3
Nonlinear plasmonics: second-harmonic generation and multiphoton photoluminescence
-
Abstract:
The study on the nonlinear optical responses arising from plasmonic nanoantennas, known as nonlinear plasmonics, has been massively investigated in recent years. Among the most basic nonlinear optical responses, second-harmonic generation (SHG) and multiphoton photoluminescence (MPL), two-photon photoluminescence in particular, has aroused extensive interests, due to their distinct properties of being ultrasensitive to the spatial symmetry and ultrafast response time of hot electrons. In this review, we give insights into fundamental roles dominating the radiations of such nonlinear optical processes and their recent research advances. Different from other reviews on nonlinear plasmonics, which mainly focused on parametric processes, this review pays equal attentions to the incoherent process of MPL. An in-depth description on the excitation and emission processes of MPL in accordance with recent studies is fully presented. By using the high ‘symmetry rule’ of SHG and ultrafast response time of MPL, advanced applications in surface enhanced spectroscopy, ultra-sensitive photodetector, biosensor and ultrafast laser pulses are highlighted in the end.
-
[1] Boyd RW. Nonlinear optics. New York: Academic Press; 2008. [2] Maiman TH. Stimulated optical radiation in ruby. Nature. 1960;187:493–4. https://doi.org/10.1038/187493a0. [3] Butet J, et al. Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications. ACS Nano. 2015;9:10545–62. https://doi.org/10.1021/acsnano.5b04373. [4] Porto JA, et al. Optical bistability in subwavelength slit apertures containing nonlinear media. Phys Rev B. 2004;70:81402. https://doi.org/10.1103/PhysRevB.70.081402. [5] Ricard D, et al. Surface-mediated enhancement of optical phase conjugation in metal colloids. Opt Lett. 1985;10:511–3. https://doi.org/10.1364/ol.10.000511. [6] Chen PY, Alu A. Subwavelength imaging using phase-conjugating nonlinear nanoantenna arrays. Nano Lett. 2011;11:5514–8. https://doi.org/10.1021/nl203354b. [7] Slusher RE, et al. Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys Rev Lett. 1985;55:2409–12. https://doi.org/10.1103/PhysRevLett.55.2409. [8] Deng L, et al. Four-wave mixing with matter waves. Nature. 1999;398:218–20. https://doi.org/10.1038/18395. [9] Malkin VM, et al. Detuned raman amplification of short laser pulses in plasma. Phys Rev Lett. 2000;84:1208–11. https://doi.org/10.1103/PhysRevLett.84.1208. [10] Liang TK, Tsang HK. Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides. Appl Phys Lett. 2004;84:2745–7. https://doi.org/10.1063/1.1702133. [11] Cheng W, et al. Reaching the nonlinear regime of Raman amplification of ultrashort laser pulses. Phys Rev Lett. 2005;94:045003. https://doi.org/10.1103/PhysRevLett.94.045003. [12] Chiao RY, et al. Stimulated Brillouin scattering and coherent generation of intense hypersonic waves. Phys Rev Lett. 1964;12:592–5. https://doi.org/10.1103/PhysRevLett.12.592. [13] Zhu Z, et al. Stored light in an optical fiber via stimulated Brillouin scattering. Science. 2007;318:1748–50. https://doi.org/10.1126/science.1149066. [14] Farrer RA, et al. Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles. Nano Lett. 2005;5:1139–42. https://doi.org/10.1021/nl050687r. [15] Wang J, et al. Direct comparison of second harmonic generation and two-photon photoluminescence from single connected gold nanodimers. J Phys Chem C. 2016;120:17699–710. https://doi.org/10.1021/acs.jpcc.6b04850. [16] Eberly JH, et al. Nonlinear light scattering accompanying multiphoton ionization. Phys Rev Lett. 1989;62:881–4. https://doi.org/10.1103/PhysRevLett.62.881. [17] Corkum PB. Plasma perspective on strong field multiphoton ionization. Phys Rev Lett. 1993;71:1994–7. https://doi.org/10.1103/PhysRevLett.71.1994. [18] Popov VS. Tunnel and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory). Phys Usp. 2004;47:855–85. https://doi.org/10.1070/PU2004v047n09ABEH001812. [19] Wang J, et al. Strong second-harmonic generation from Au-Al heterodimers. Nanoscale. 2019;11:23475–81. https://doi.org/10.1039/c9nr07644a. [20] Agrawal GP. Nonlinear fiber optics. New York: Acedemic Press; 2010. [21] Friberg S, Smith P. Nonlinear optical glasses for ultrafast optical switches. IEEE J Quantum Electron. 1987;23:2089–94. https://doi.org/10.1109/jqe.1987.1073278. [22] Heebner JE, Boyd RW. Enhanced all-optical switching by use of a nonlinear fiber ring resonator. Opt Lett. 1999;24:847–9. https://doi.org/10.1364/ol.24.000847. [23] Russell P. Photonic crystal fibers. Science. 2003;299:358–62. https://doi.org/10.1126/science.1079280. [24] Krauss TF. Slow light in photonic crystal waveguides. J Phys D Appl Phys. 2007;40:2666–70. https://doi.org/10.1088/0022-3727/40/9/s07. [25] Dudley JM, Taylor JR. Supercontinuum generation in optical fibers. New York: Cambridge University Press; 2010. [26] Alfano RR, Shapiro SL. Observation of self-phase modulation and small-scale filaments in crystals and glasses. Phys Rev Lett. 1970;24:592–4. https://doi.org/10.1103/PhysRevLett.24.592. [27] Maier SA. Plasmonics: fundamentals and applications. New York: Springer; 2007. [28] de Aberasturi DJ, et al. Modern applications of plasmonic nanoparticles: from energy to health. Adv Opt Mat. 2015;3:602–17. https://doi.org/10.1002/adom.201500053. [29] Ding S-Y, et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat Rev Mater. 2016;1:6. https://doi.org/10.1038/natrevmats.2016.21. [30] Li JF, et al. Plasmon-enhanced fluorescence spectroscopy. Chem Soc Rev. 2017;46:3962–79. https://doi.org/10.1039/c7cs00169j. [31] Jaculbia RB, et al. Single-molecule resonance Raman effect in a plasmonic nanocavity. Nat Nanotechnol. 2020;15:105–10. https://doi.org/10.1038/s41565-019-0614-8. [32] Cong B, et al. Gold nanorods: near-infrared plasmonic photothermal conversion and surface coating. J Mat Sci Chem Engine. 2014;2:20–5. https://doi.org/10.4236/msce.2014.21004. [33] Furube A, Hashimoto S. Insight into plasmonic hot-electron transfer and plasmon molecular drive: new dimensions in energy conversion and nanofabrication. NPG Asia Mat. 2017;9:e454–e454. https://doi.org/10.1038/am.2017.191. [34] Mallah AR, et al. Plasmonic nanofluids for high photothermal conversion efficiency in direct absorption solar collectors: Fundamentals and applications. Solar Energy Mat Solar Cells. 2019;201:110084. https://doi.org/10.1016/j.solmat.2019.110084. [35] Mooradian A. Photoluminescence of metals. Phys Rev Lett. 1969;22:185–7. https://doi.org/10.1103/PhysRevLett.22.185. [36] Boyd GT, et al. Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. Phys Rev B: Condens Matter. 1986;33:7923–36. https://doi.org/10.1103/physrevb.33.7923. [37] Wang J, et al. Carrier recombination and plasmonic emission channels in metallic photoluminescence. Nanoscale. 2018;10:8240–5. https://doi.org/10.1039/c7nr07821h. [38] Bohren CF, Huffman DR. Absorption and scattering of light by small particles. New York: Wiley; 1998. [39] Nehl CL, et al. Scattering spectra of single gold nanoshells. Nano Lett. 2004;4:2355–9. https://doi.org/10.1021/nl048610a. [40] Wen F, et al. Charge transfer plasmons: optical frequency conductances and tunable infrared resonances. ACS Nano. 2015;9:6428–35. https://doi.org/10.1021/acsnano.5b02087. [41] Cho EC, et al. Measuring the optical absorption cross-sections of Au-Ag nanocages and Au nanorods by photoacoustic imaging. J Phys Chem C. 2009;113:9023–8. https://doi.org/10.1021/jp903343p. [42] Zhang N, et al. Near-field dielectric scattering promotes optical absorption by platinum nanoparticles. Nat Photonics. 2016;10:473–82. https://doi.org/10.1038/nphoton.2016.76. [43] Wackenhut F, et al. Multicolor microscopy and spectroscopy reveals the physics of the one-photon luminescence in gold nanorods. J Phys Chem C. 2013;117:17870–7. https://doi.org/10.1021/jp407353r. [44] Bouhelier A, et al. Near-field second-harmonic generation induced by local field enhancement. Phys Rev Lett. 2003;90:013903. https://doi.org/10.1103/PhysRevLett.90.013903. [45] Dong Z, et al. Second-harmonic generation from sub-5 nm gaps by directed self-assembly of nanoparticles onto template-stripped gold substrates. Nano Lett. 2015;15:5976–81. https://doi.org/10.1021/acs.nanolett.5b02109. [46] Wang Z, et al. Selectively plasmon-enhanced second-harmonic generation from monolayer tungsten diselenide on flexible substrates. ACS Nano. 2018;12:1859–67. https://doi.org/10.1021/acsnano.7b08682. [47] Kruk SS, et al. Asymmetric parametric generation of images with nonlinear dielectric metasurfaces. Nat Photonics. 2022;16:561–5. https://doi.org/10.1038/s41566-022-01018-7. [48] Stockman MI, et al. Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations. Phys Rev Lett. 2004;92:057402. https://doi.org/10.1103/PhysRevLett.92.057402. [49] Bachelier G, et al. Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions. Phys Rev B. 2010;82:235403. https://doi.org/10.1103/PhysRevB.82.235403. [50] Butet J, et al. Optical second harmonic generation of single metallic nanoparticlesembedded in a homogeneous medium. Nano Lett. 2010;10:1717–21. https://doi.org/10.1021/nl1000949. [51] Zhang, et al. Three-dimensional nanostructures as highly efficient generators of second harmonic light. Nano Lett. 2011;11:5519–23. https://doi.org/10.1021/nl2033602. [52] Butet J, et al. Surface second-harmonic generation from coupled spherical plasmonic nanoparticles: eigenmode analysis and symmetry properties. Phys Rev B. 2014;89:245449. https://doi.org/10.1103/PhysRevB.89.245449. [53] Zhang T, et al. Coherent second harmonic generation enhanced by coherent plasmon-exciton coupling in plasmonic nanocavities. ACS Photonics. 2023;10:1529–37. https://doi.org/10.1021/acsphotonics.3c00105. [54] Hentschel M, et al. Quantitative modeling of the third harmonic emission spectrum of plasmonic nanoantennas. Nano Lett. 2012;12:3778–82. https://doi.org/10.1021/nl301686x. [55] Navarro-Cia M, Maier SA. Broad-band near-infrared plasmonic nanoantennas for higher harmonic generation. ACS Nano. 2012;6:3537–44. https://doi.org/10.1021/nn300565x. [56] Hajisalem G, et al. Probing the quantum tunneling limit of plasmonic enhancement by third harmonic generation. Nano Lett. 2014;14:6651–4. https://doi.org/10.1021/nl503324g. [57] Danckwerts M, Novotny L. Optical frequency mixing at coupled gold nanoparticles. Phys Rev Lett. 2007;98:026104. https://doi.org/10.1103/PhysRevLett.98.026104. [58] Biagioni P, et al. Dynamics of four-photon photoluminescence in gold nanoantennas. Nano Lett. 2012;12:2941–7. https://doi.org/10.1021/nl300616s. [59] Xu J, et al. Multiphoton upconversion enhanced by deep subwavelength near-field confinement. Nano Lett. 2021;21:3044–51. https://doi.org/10.1021/acs.nanolett.1c00232. [60] Butet J, et al. Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation. Nano Lett. 2013;13:1787–92. https://doi.org/10.1021/nl400393e. [61] Galanty M, et al. Second harmonic generation hotspot on a centrosymmetric smooth silver surface. Light Sci Appl. 2018;7:49. https://doi.org/10.1038/s41377-018-0053-6. [62] Berini P. Surface plasmon photodetectors and their applications. Laser Photonics Rev. 2014;8:197–220. https://doi.org/10.1002/lpor.201300019. [63] Wang J, et al. Saturable plasmonic metasurfaces for laser mode locking. Light Sci Appl. 2020;9:50. https://doi.org/10.1038/s41377-020-0291-2. [64] Zhang L, et al. Plug-and-play’ plasmonic metafibers for ultrafast fibre lasers. Light Adv Manufact. 2022;3:45. https://doi.org/10.37188/lam.2022.045. [65] Jin R, et al. Correlating second harmonic optical responses of single Ag nanoparticles with morphology. J Am Chem Soc. 2005;127:12482–3. https://doi.org/10.1021/ja0537169. [66] Butet J, et al. Three-dimensional mapping of single gold nanoparticles embedded in a homogeneous transparent matrix using optical second-harmonic generation. Opt Express. 2010;18:22314–23. https://doi.org/10.1364/OE.18.022314. [67] Accanto N, et al. Phase control of femtosecond pulses on the nanoscale using second harmonic nanoparticles. Light Sci Appl. 2014;3:e143–e143. https://doi.org/10.1038/lsa.2014.24. [68] Accanto N, et al. Capturing the optical phase response of nanoantennas by coherent second-harmonic microscopy. Nano Lett. 2014;14:4078–82. https://doi.org/10.1021/nl501588r. [69] Nuriya M, et al. Multimodal two-photon imaging using a second harmonic generation-specific dye. Nat Commun. 2016;7:11557. https://doi.org/10.1038/ncomms11557. [70] Zipfel WR, et al. Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol. 2003;21:1369–77. https://doi.org/10.1038/nbt899. [71] Lakowicz JR, et al. Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. Analyst. 2008;133:1308–46. https://doi.org/10.1039/b802918k. [72] Kauranen M, Zayats AV. Nonlinear plasmonics. Nat Photonics. 2012;6:737–48. https://doi.org/10.1038/nphoton.2012.244. [73] Metzger B, et al. Ultrafast nonlinear plasmonic spectroscopy: from dipole nanoantennas to complex hybrid plasmonic structures. ACS Photonics. 2016;3:1336–50. https://doi.org/10.1021/acsphotonics.5b00587. [74] Butet J, Martin OJ. Nonlinear plasmonic nanorulers. ACS Nano. 2014;8:4931–9. https://doi.org/10.1021/nn500943t. [75] Yang ZJ, et al. Efficient second harmonic generation in gold-silicon core-shell nanostructures. Opt Express. 2018;26:5835–44. https://doi.org/10.1364/OE.26.005835. [76] Ding SJ, et al. Magnetic plasmon-enhanced second-harmonic generation on colloidal gold nanocups. Nano Lett. 2019;19:2005–11. https://doi.org/10.1021/acs.nanolett.9b00020. [77] Hou J, et al. Self-induced transparency in a perfectly absorbing chiral second-harmonic generator. PhotoniX. 2022;3:22. https://doi.org/10.1186/s43074-022-00068-y. [78] Loudon R. The quantum theory of light. New York: Oxford University Press; 2000. [79] Shen YR. The principles of nonlinear optics. New York: Wiley; 1984. [80] Simon HJ, et al. Optical second-harmonic generation with surface plasmons in silver films. Phys Rev Lett. 1974;33:1531–4. https://doi.org/10.1103/PhysRevLett.33.1531. [81] Shan J, et al. Experimental study of optical second-harmonic scattering from spherical nanoparticles. Phys Rev A. 2006;73:023819. https://doi.org/10.1103/PhysRevA.73.023819. [82] Dadap JI. Optical second-harmonic scattering from cylindrical particles. Phys Rev B. 2008;78:205322. https://doi.org/10.1103/PhysRevB.78.205322. [83] Bloembergen N, et al. Optical second-harmonic generation in reflection from media with inversion symmetry. Phys Rev. 1968;174:813–22. https://doi.org/10.1103/PhysRev.174.813. [84] O’Brien K, et al. Predicting nonlinear properties of metamaterials from the linear response. Nat Mater. 2015;14:379–83. https://doi.org/10.1038/nmat4214. [85] Celebrano M, et al. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nature Nanotechnol. 2015;10:412–7. https://doi.org/10.1038/nnano.2015.69. [86] Linnenbank H, Linden S. Second harmonic generation spectroscopy on second harmonic resonant plasmonic metamaterials. Optica. 2015;2:698–701. https://doi.org/10.1364/optica.2.000698. [87] Metzger B, et al. Third-harmonic spectroscopy and modeling of the nonlinear response of plasmonic nanoantennas. Opt Lett. 2012;37:4741–3. https://doi.org/10.1364/ol.37.004741. [88] Demtroder W. Laser spectroscopy: basic concepts and instrumentation. New York: Springer; 2003. [89] Pu Y, et al. Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation. Phys Rev Lett. 2010;104:207402. https://doi.org/10.1103/PhysRevLett.104.207402. [90] Chen S, et al. Strong nonlinear optical activity induced by lattice surface modes on plasmonic metasurface. Nano Lett. 2019;19:6278–83. https://doi.org/10.1021/acs.nanolett.9b02417. [91] Hooper DC, et al. Second harmonic spectroscopy of surface lattice resonances. Nano Lett. 2019;19:165–72. https://doi.org/10.1021/acs.nanolett.8b03574. [92] Shen B, et al. Nonlinear spectral-imaging study of second- and third-harmonic enhancements by surface-lattice resonances. Adv Opt Mat. 2020;8:1901981. https://doi.org/10.1002/adom.201901981. [93] Spackova B, Homola J. Sensing properties of lattice resonances of 2D metal nanoparticle arrays: an analytical model. Opt Express. 2013;21:27490–502. https://doi.org/10.1364/oe.21.027490. [94] Smith EM, et al. Second harmonic generation enhancement of ITO-based ENZ materials and metasurfaces. MRS Adv. 2022;7:741–5. https://doi.org/10.1557/s43580-022-00353-9. [95] Argyropoulos C, et al. Giant second-harmonic generation efficiency and ideal phase matching with a double ε-near-zero cross-slit metamaterial. Phys Rev B. 2014;89:235401. https://doi.org/10.1103/PhysRevB.89.235401. [96] Deng J, et al. Giant enhancement of second-order nonlinearity of epsilon-near- zero medium by a plasmonic metasurface. Nano Lett. 2020;20:5421–7. https://doi.org/10.1021/acs.nanolett.0c01810. [97] Metzger B, et al. Strong enhancement of second harmonic emission by plasmonic resonances at the second harmonic wavelength. Nano Lett. 2015;15:3917–22. https://doi.org/10.1021/acs.nanolett.5b00747. [98] Thyagarajan K, et al. Enhanced second-harmonic generation from double resonant plasmonic antennae. Opt Express. 2012;20:12860–5. https://doi.org/10.1364/OE.20.012860. [99] Ren ML, et al. Giant enhancement of second harmonic generation by engineering double plasmonic resonances at nanoscale. Opt Express. 2014;22:28653–61. https://doi.org/10.1364/OE.22.028653. [100] Guo K, Guo Z. Enhanced second-harmonic generation from Fano like resonance in an asymmetric homodimer of gold elliptical nanodisks. ACS Omega. 2019;4:1757–62. https://doi.org/10.1021/acsomega.8b02986. [101] Chandrasekar R, et al. Second harmonic generation with plasmonic metasurfaces: direct comparison of electric and magnetic resonances. Opt Mat Expr. 2015;5:2682–91. https://doi.org/10.1364/ome.5.002682. [102] Linden S, et al. Collective effects in second-harmonic generation from split-ring-resonator arrays. Phys Rev Lett. 2012;109:015502. https://doi.org/10.1103/PhysRevLett.109.015502. [103] Tsai WY, et al. Second Harmonic Light Manipulation with Vertical Split Ring Resonators. Adv Mat. 2019;31:1806479. https://doi.org/10.1002/adma.201806479. [104] Valev VK, et al. Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures. Nano Lett. 2009;9:3945–8. https://doi.org/10.1021/nl9021623. [105] Valev VK, et al. Plasmons reveal the direction of magnetization in nickel nanostructures. ACS Nano. 2011;5:91–6. https://doi.org/10.1021/nn102852b. [106] Husu H, et al. Metamaterials with tailored nonlinear optical response. Nano Lett. 2012;12:673–7. https://doi.org/10.1021/nl203524k. [107] Canfield BK, et al. Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers. Nano Lett. 2007;7:1251–5. https://doi.org/10.1021/nl0701253. [108] Xu T, et al. Second-harmonic emission from sub-wavelength apertures: effects of aperture symmetry and lattice arrangement. Opt Express. 2007;15:13894–906. https://doi.org/10.1364/oe.15.013894. [109] Schon P, et al. Enhanced second-harmonic generation from individual metallic nanoapertures. Opt Lett. 2010;35:4063–5. https://doi.org/10.1364/OL.35.004063. [110] Berthelot J, et al. Silencing and enhancement of second-harmonic generation in optical gap antennas. Opt Express. 2012;20:10498–508. https://doi.org/10.1364/OE.20.010498. [111] Viarbitskaya S, et al. Delocalization of nonlinear optical responses in plasmonic nanoantennas. Phys Rev Lett. 2015;115:197401. https://doi.org/10.1103/PhysRevLett.115.197401. [112] Grosse NB, et al. Nonlinear plasmon-photon interaction resolved by k-space spectroscopy. Phys Rev Lett. 2012;108:136802. https://doi.org/10.1103/PhysRevLett.108.136802. [113] Li Y, et al. Transversely divergent second harmonic generation by surface plasmon polaritons on single metallic nanowires. Nano Lett. 2017;17:7803–8. https://doi.org/10.1021/acs.nanolett.7b04016. [114] Imura K, et al. Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes. J Phys Chem B. 2005;109:13214–20. https://doi.org/10.1021/jp051631o. [115] Rosei R, Lynch DW. Thermomodulation spectra of Al, Au, and Cu. Phys Rev B. 1972;5:3883–94. https://doi.org/10.1103/PhysRevB.5.3883. [116] Rosei R, et al. d bands position and width in gold from very low temperature thermomodulation measurements. Surf Sci. 1973;37:689–99. https://doi.org/10.1016/0039-6028(73)90359-2. [117] Rosei R, et al. Temperature modulation of the optical transitions involving the Fermi surface in Ag: experimental. Phys Rev B. 1974;10:484–9. https://doi.org/10.1103/PhysRevB.10.484. [118] Guerrisi M, et al. Splitting of the interband absorption edge in Au. Phys Rev B. 1975;12:557–63. https://doi.org/10.1103/PhysRevB.12.557. [119] Hohlfeld J, et al. Electron and lattice dynamics following optical excitation of metals. Chem Phys. 2000;251:237–58. https://doi.org/10.1016/s0301-0104(99)00330-4. [120] Hu H, et al. Plasmon-modulated photoluminescence of individual gold nanostructures. ACS Nano. 2012;6:10147–55. https://doi.org/10.1021/nn3039066. [121] Jiang XF, et al. Excitation nature of two-photon photoluminescence of gold nanorods and coupled gold nanoparticles studied by two-pulse emission modulation spectroscopy. J Phys Chem Lett. 2013;4:1634–8. https://doi.org/10.1021/jz400582h. [122] Horneber A, et al. Nonlinear optical imaging of single plasmonic nanoparticles with 30 nm resolution. Phys Chem Chem Phys. 2015;17:21288–93. https://doi.org/10.1039/c4cp05342g. [123] Wang N, et al. Ultrafast laser melting of Au nanoparticles: atomistic simulations. J Nanopart Res. 2011;13:4491–509. https://doi.org/10.1007/s11051-011-0402-3. [124] Zeni C, et al. Data-driven simulation and characterisation of gold nanoparticle melting. Nat Commun. 2021;12:6056. https://doi.org/10.1038/s41467-021-26199-7. [125] Wang J, et al. Approach and coalescence of gold nanoparticles driven by surface thermodynamic fluctuations and atomic interaction forces. ACS Nano. 2016;10:2893–902. https://doi.org/10.1021/acsnano.5b08236. [126] Anger P, et al. Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett. 2006;96:113002. https://doi.org/10.1103/PhysRevLett.96.113002. [127] Viste P, et al. Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources. ACS Nano. 2010;4:759–64. https://doi.org/10.1021/nn901294d. [128] Shahbazyan TV. Theory of plasmon-enhanced metal photoluminescence. Nano Lett. 2013;13:194–8. https://doi.org/10.1021/nl303851z. [129] Shahbazyan TV, et al. Size-dependent surface plasmon dynamics in metal nanoparticles. Phys Rev Lett. 1998;81:3120–3. https://doi.org/10.1103/PhysRevLett.81.3120. [130] Dulkeith E, et al. Plasmon emission in photoexcited gold nanoparticles. Phys Rev B. 2004;70:205424. https://doi.org/10.1103/PhysRevB.70.205424. [131] Fang Y, et al. Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio. ACS Nano. 2012;6:7177–84. https://doi.org/10.1021/nn3022469. [132] Biagioni P, et al. Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration. Phys Rev B. 2009;80:045411. https://doi.org/10.1103/PhysRevB.80.045411. [133] Wang QQ, et al. Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region. Nano Lett. 2007;7:723–8. https://doi.org/10.1021/nl062964f. [134] Ma Z, et al. Origin of the avalanche-like photoluminescence from metallic nanowires. Sci Rep. 2016;6:18857. https://doi.org/10.1038/srep18857. [135] Gong HM, et al. Strong near-infrared avalanche photoluminescence from Ag nanowire arrays. Plasmonics. 2008;3:59–64. https://doi.org/10.1007/s11468-008-9054-2. [136] Song M, et al. Polarization properties of surface plasmon enhanced photoluminescence from a single Ag nanowire. Opt Express. 2012;20:22290–7. https://doi.org/10.1364/OE.20.022290. [137] Wang J, et al. Hot carrier-mediated avalanche multiphoton photoluminescence from coupled Au-Al nanoantennas. J Chem Phys. 2021;154:074701. https://doi.org/10.1063/5.0032611. [138] Hellwarth R, Christensen P. Nonlinear optical microscopic examination of structure in polycrystalline ZnSe. Opt Commun. 1974;12:318–22. https://doi.org/10.1016/0030-4018(74)90024-8. [139] Pavone FS, Campagnola PJ. Second harmonic generation imaging. New York: CRC Press; 2016. [140] Carvalho BR, et al. Nonlinear dark-field imaging of one-dimensional defects in monolayer dichalcogenides. Nano Lett. 2020;20:284–91. https://doi.org/10.1021/acs.nanolett.9b03795. [141] Oka H. Highly-efficient entangled two-photon absorption with the assistance of plasmon nanoantenna. J Phys B: Atomic, Mol Opt Phys. 2015;48:115503. https://doi.org/10.1088/0953-4075/48/11/115503. [142] Smolyaninov A, et al. Plasmonic enhanced two-photon absorption in silicon photodetectors for optical correlators in the near-infrared. Opt Lett. 2016;41:4445–8. https://doi.org/10.1364/OL.41.004445. [143] Kong L, et al. A novel flurophore-cyano-carboxylic-Ag microhybrid: Enhanced two photon absorption for two-photon photothermal therapy of HeLa cancer cells by targeting mitochondria. Biosens Bioelectron. 2018;108:14–9. https://doi.org/10.1016/j.bios.2018.02.028. [144] Li JL, Gu M. Surface plasmonic gold nanorods for enhanced two-photon microscopic imaging and apoptosis induction of cancer cells. Biomaterials. 2010;31:9492–8. https://doi.org/10.1016/j.biomaterials.2010.08.068. [145] Vickers ET, et al. Two-photon photoluminescence and photothermal properties of hollow gold nanospheres for efficient theranostic applications. J Phys Chem C. 2017;122:13304–13. https://doi.org/10.1021/acs.jpcc.7b09055. [146] Kang Z, et al. Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers. Appl Phys Lett. 2013;103:4. https://doi.org/10.1063/1.4816516. [147] Wang X-D, et al. Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser. Appl Phys Lett. 2014;105:16. https://doi.org/10.1063/1.4899133. [148] Shu Y, et al. Gold nanorods as saturable absorber for harmonic soliton molecules generation. Front Chem. 2019;7:715. https://doi.org/10.3389/fchem.2019.00715. [149] Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nat Mater. 2010;9:205–13. https://doi.org/10.1038/nmat2629. [150] Wang F, Melosh NA. Plasmonic energy collection through hot carrier extraction. Nano Lett. 2011;11:5426–30. https://doi.org/10.1021/nl203196z. [151] Goykhman I, et al. Locally oxidized silicon surface-plasmon Schottky detector for telecom regime. Nano Lett. 2011;11:2219–24. https://doi.org/10.1021/nl200187v. [152] Berini P, et al. Thin Au surface plasmon waveguide Schottky detectors on p-Si. Nanotechnology. 2012;23:444011. https://doi.org/10.1088/0957-4484/23/44/444011. [153] Knight MW, et al. Photodetection with active optical antennas. Science. 2011;332:702–4. https://doi.org/10.1126/science.1203056. [154] Knight MW, et al. Embedding plasmonic nanostructure diodes enhances hot electron emission. Nano Lett. 2013;13:1687–92. https://doi.org/10.1021/nl400196z. [155] Huang X, et al. Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater. 2009;21:4880–910. https://doi.org/10.1002/adma.200802789. [156] Yang X, et al. Gold Nanomaterials at work in biomedicine. Chem Rev. 2015;115:10410–88. https://doi.org/10.1021/acs.chemrev.5b00193. [157] Olesiak-Banska J, et al. Two-photon absorption and photoluminescence of colloidal gold nanoparticles and nanoclusters. Chem Soc Rev. 2019;48:4087–117. https://doi.org/10.1039/c8cs00849c. [158] Zheng J, et al. Gold Nanorods: The most versatile plasmonic nanoparticles. Chem Rev. 2021;121:13342–453. https://doi.org/10.1021/acs.chemrev.1c00422. [159] Durr NJ, et al. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett. 2007;7:941–5. https://doi.org/10.1021/nl062962v. [160] Chen S, et al. Symmetry-selective third-harmonic generation from plasmonic metacrystals. Phys Rev Lett. 2014;113:033901. https://doi.org/10.1103/PhysRevLett.113.033901. [161] Li G, et al. Continuous control of the nonlinearity phase for harmonic generations. Nat Mater. 2015;14:607–12. https://doi.org/10.1038/nmat4267. [162] Li G, et al. Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation. Nano Lett. 2017;17:7974–9. https://doi.org/10.1021/acs.nanolett.7b04451. [163] Li Z, et al. Tripling the capacity of optical vortices by nonlinear metasurface. Laser Photonics Rev. 2018;12:1800164. https://doi.org/10.1002/lpor.201800164. [164] Liu L, et al. Backward phase matching for second harmonic generation in negative-index conformal surface plasmonic metamaterials. Adv Sci. 2018;5:1800661. https://doi.org/10.1002/advs.201800661. [165] Forbes A, et al. Structured light. Nat Photonics. 2021;15:253–62. https://doi.org/10.1038/s41566-021-00780-4. [166] Liu L, et al. Plasmon-induced thermal tuning of few-exciton strong coupling in 2D atomic crystals. Optica. 2021;8:11. https://doi.org/10.1364/optica.436140. [167] Sit A, et al. High-dimensional intracity quantum cryptography with structured photons. Optica. 2017;4:9. https://doi.org/10.1364/optica.4.001006. [168] Zhu Z, et al. Compensation-free high-dimensional free-space optical communication using turbulence-resilient vector beams. Nat Commun. 2021;12:1666. https://doi.org/10.1038/s41467-021-21793-1. [169] Weber M, et al. MINSTED nanoscopy enters the Angstrom localization range. Nat Biotechnol. 2023;41:569–76. https://doi.org/10.1038/s41587-022-01519-4. [170] Woerdemann M, et al. Optical assembly of microparticles into highly ordered structures using Ince-Gaussian beams. Appl Phys Lett. 2011;98:11. https://doi.org/10.1063/1.3561770. [171] Yang Y, et al. Optical trapping with structured light: a review. Adv Photonics. 2021;3:034001. https://doi.org/10.1117/1.Ap.3.3.034001. [172] Yeshchenko OA, et al. Temperature dependence of the surface plasmon resonance in gold nanoparticles. Surf Sci. 2013;608:275–81. https://doi.org/10.1016/j.susc.2012.10.019. [173] Judek J, et al. Titanium nitride as a plasmonic material from near-ultraviolet to very-long-wavelength infrared range. Materials (Basel). 2021;14:22. https://doi.org/10.3390/ma14227095. [174] He W, et al. Plasmonic titanium nitride nanoparticles for in vivo photoacoustic tomography imaging and photothermal cancer therapy. Biomaterials. 2017;132:37–47. https://doi.org/10.1016/j.biomaterials.2017.04.007. [175] Chang CC, et al. Highly plasmonic titanium nitride by room-temperature sputtering. Sci Rep. 2019;9:15287. https://doi.org/10.1038/s41598-019-51236-3. [176] Luo J, et al. Tailored organic electro-optic materials and their hybrid systems for device applications. Chem Mater. 2010;23:544–53. https://doi.org/10.1021/cm1022344. [177] Melikyan A, et al. High-speed plasmonic phase modulators. Nat Photonics. 2014;8:229–33. https://doi.org/10.1038/nphoton.2014.9. [178] Karst J, et al. Electrically switchable metallic polymer nanoantennas. Science. 2021;374:612–6. https://doi.org/10.1126/science.abj3433. -