留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nonlinear plasmonics: second-harmonic generation and multiphoton photoluminescence

Nonlinear plasmonics: second-harmonic generation and multiphoton photoluminescence[J]. PhotoniX. doi: 10.1186/s43074-023-00106-3
引用本文: Nonlinear plasmonics: second-harmonic generation and multiphoton photoluminescence[J]. PhotoniX. doi: 10.1186/s43074-023-00106-3
Jiyong Wang, Lei Zhang, Min Qiu. Nonlinear plasmonics: second-harmonic generation and multiphoton photoluminescence[J]. PhotoniX. doi: 10.1186/s43074-023-00106-3
Citation: Jiyong Wang, Lei Zhang, Min Qiu. Nonlinear plasmonics: second-harmonic generation and multiphoton photoluminescence[J]. PhotoniX. doi: 10.1186/s43074-023-00106-3

Nonlinear plasmonics: second-harmonic generation and multiphoton photoluminescence

doi: 10.1186/s43074-023-00106-3

Nonlinear plasmonics: second-harmonic generation and multiphoton photoluminescence

Funds: J. W. gratefully acknowledge the Scientific Research Starting Fund from Hangzhou Dianzi University (KYS045623025) and support from the Sino-German Centre for Research Promotion (GZ1627) and the National Natural Science Foundation of China (61905200).
  • [1] Boyd RW. Nonlinear optics. New York: Academic Press; 2008.
    [2] Maiman TH. Stimulated optical radiation in ruby. Nature. 1960;187:493–4. https://doi.org/10.1038/187493a0.
    [3] Butet J, et al. Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications. ACS Nano. 2015;9:10545–62. https://doi.org/10.1021/acsnano.5b04373.
    [4] Porto JA, et al. Optical bistability in subwavelength slit apertures containing nonlinear media. Phys Rev B. 2004;70:81402. https://doi.org/10.1103/PhysRevB.70.081402.
    [5] Ricard D, et al. Surface-mediated enhancement of optical phase conjugation in metal colloids. Opt Lett. 1985;10:511–3. https://doi.org/10.1364/ol.10.000511.
    [6] Chen PY, Alu A. Subwavelength imaging using phase-conjugating nonlinear nanoantenna arrays. Nano Lett. 2011;11:5514–8. https://doi.org/10.1021/nl203354b.
    [7] Slusher RE, et al. Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys Rev Lett. 1985;55:2409–12. https://doi.org/10.1103/PhysRevLett.55.2409.
    [8] Deng L, et al. Four-wave mixing with matter waves. Nature. 1999;398:218–20. https://doi.org/10.1038/18395.
    [9] Malkin VM, et al. Detuned raman amplification of short laser pulses in plasma. Phys Rev Lett. 2000;84:1208–11. https://doi.org/10.1103/PhysRevLett.84.1208.
    [10] Liang TK, Tsang HK. Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides. Appl Phys Lett. 2004;84:2745–7. https://doi.org/10.1063/1.1702133.
    [11] Cheng W, et al. Reaching the nonlinear regime of Raman amplification of ultrashort laser pulses. Phys Rev Lett. 2005;94:045003. https://doi.org/10.1103/PhysRevLett.94.045003.
    [12] Chiao RY, et al. Stimulated Brillouin scattering and coherent generation of intense hypersonic waves. Phys Rev Lett. 1964;12:592–5. https://doi.org/10.1103/PhysRevLett.12.592.
    [13] Zhu Z, et al. Stored light in an optical fiber via stimulated Brillouin scattering. Science. 2007;318:1748–50. https://doi.org/10.1126/science.1149066.
    [14] Farrer RA, et al. Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles. Nano Lett. 2005;5:1139–42. https://doi.org/10.1021/nl050687r.
    [15] Wang J, et al. Direct comparison of second harmonic generation and two-photon photoluminescence from single connected gold nanodimers. J Phys Chem C. 2016;120:17699–710. https://doi.org/10.1021/acs.jpcc.6b04850.
    [16] Eberly JH, et al. Nonlinear light scattering accompanying multiphoton ionization. Phys Rev Lett. 1989;62:881–4. https://doi.org/10.1103/PhysRevLett.62.881.
    [17] Corkum PB. Plasma perspective on strong field multiphoton ionization. Phys Rev Lett. 1993;71:1994–7. https://doi.org/10.1103/PhysRevLett.71.1994.
    [18] Popov VS. Tunnel and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory). Phys Usp. 2004;47:855–85. https://doi.org/10.1070/PU2004v047n09ABEH001812.
    [19] Wang J, et al. Strong second-harmonic generation from Au-Al heterodimers. Nanoscale. 2019;11:23475–81. https://doi.org/10.1039/c9nr07644a.
    [20] Agrawal GP. Nonlinear fiber optics. New York: Acedemic Press; 2010.
    [21] Friberg S, Smith P. Nonlinear optical glasses for ultrafast optical switches. IEEE J Quantum Electron. 1987;23:2089–94. https://doi.org/10.1109/jqe.1987.1073278.
    [22] Heebner JE, Boyd RW. Enhanced all-optical switching by use of a nonlinear fiber ring resonator. Opt Lett. 1999;24:847–9. https://doi.org/10.1364/ol.24.000847.
    [23] Russell P. Photonic crystal fibers. Science. 2003;299:358–62. https://doi.org/10.1126/science.1079280.
    [24] Krauss TF. Slow light in photonic crystal waveguides. J Phys D Appl Phys. 2007;40:2666–70. https://doi.org/10.1088/0022-3727/40/9/s07.
    [25] Dudley JM, Taylor JR. Supercontinuum generation in optical fibers. New York: Cambridge University Press; 2010.
    [26] Alfano RR, Shapiro SL. Observation of self-phase modulation and small-scale filaments in crystals and glasses. Phys Rev Lett. 1970;24:592–4. https://doi.org/10.1103/PhysRevLett.24.592.
    [27] Maier SA. Plasmonics: fundamentals and applications. New York: Springer; 2007.
    [28] de Aberasturi DJ, et al. Modern applications of plasmonic nanoparticles: from energy to health. Adv Opt Mat. 2015;3:602–17. https://doi.org/10.1002/adom.201500053.
    [29] Ding S-Y, et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat Rev Mater. 2016;1:6. https://doi.org/10.1038/natrevmats.2016.21.
    [30] Li JF, et al. Plasmon-enhanced fluorescence spectroscopy. Chem Soc Rev. 2017;46:3962–79. https://doi.org/10.1039/c7cs00169j.
    [31] Jaculbia RB, et al. Single-molecule resonance Raman effect in a plasmonic nanocavity. Nat Nanotechnol. 2020;15:105–10. https://doi.org/10.1038/s41565-019-0614-8.
    [32] Cong B, et al. Gold nanorods: near-infrared plasmonic photothermal conversion and surface coating. J Mat Sci Chem Engine. 2014;2:20–5. https://doi.org/10.4236/msce.2014.21004.
    [33] Furube A, Hashimoto S. Insight into plasmonic hot-electron transfer and plasmon molecular drive: new dimensions in energy conversion and nanofabrication. NPG Asia Mat. 2017;9:e454–e454. https://doi.org/10.1038/am.2017.191.
    [34] Mallah AR, et al. Plasmonic nanofluids for high photothermal conversion efficiency in direct absorption solar collectors: Fundamentals and applications. Solar Energy Mat Solar Cells. 2019;201:110084. https://doi.org/10.1016/j.solmat.2019.110084.
    [35] Mooradian A. Photoluminescence of metals. Phys Rev Lett. 1969;22:185–7. https://doi.org/10.1103/PhysRevLett.22.185.
    [36] Boyd GT, et al. Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. Phys Rev B: Condens Matter. 1986;33:7923–36. https://doi.org/10.1103/physrevb.33.7923.
    [37] Wang J, et al. Carrier recombination and plasmonic emission channels in metallic photoluminescence. Nanoscale. 2018;10:8240–5. https://doi.org/10.1039/c7nr07821h.
    [38] Bohren CF, Huffman DR. Absorption and scattering of light by small particles. New York: Wiley; 1998.
    [39] Nehl CL, et al. Scattering spectra of single gold nanoshells. Nano Lett. 2004;4:2355–9. https://doi.org/10.1021/nl048610a.
    [40] Wen F, et al. Charge transfer plasmons: optical frequency conductances and tunable infrared resonances. ACS Nano. 2015;9:6428–35. https://doi.org/10.1021/acsnano.5b02087.
    [41] Cho EC, et al. Measuring the optical absorption cross-sections of Au-Ag nanocages and Au nanorods by photoacoustic imaging. J Phys Chem C. 2009;113:9023–8. https://doi.org/10.1021/jp903343p.
    [42] Zhang N, et al. Near-field dielectric scattering promotes optical absorption by platinum nanoparticles. Nat Photonics. 2016;10:473–82. https://doi.org/10.1038/nphoton.2016.76.
    [43] Wackenhut F, et al. Multicolor microscopy and spectroscopy reveals the physics of the one-photon luminescence in gold nanorods. J Phys Chem C. 2013;117:17870–7. https://doi.org/10.1021/jp407353r.
    [44] Bouhelier A, et al. Near-field second-harmonic generation induced by local field enhancement. Phys Rev Lett. 2003;90:013903. https://doi.org/10.1103/PhysRevLett.90.013903.
    [45] Dong Z, et al. Second-harmonic generation from sub-5 nm gaps by directed self-assembly of nanoparticles onto template-stripped gold substrates. Nano Lett. 2015;15:5976–81. https://doi.org/10.1021/acs.nanolett.5b02109.
    [46] Wang Z, et al. Selectively plasmon-enhanced second-harmonic generation from monolayer tungsten diselenide on flexible substrates. ACS Nano. 2018;12:1859–67. https://doi.org/10.1021/acsnano.7b08682.
    [47] Kruk SS, et al. Asymmetric parametric generation of images with nonlinear dielectric metasurfaces. Nat Photonics. 2022;16:561–5. https://doi.org/10.1038/s41566-022-01018-7.
    [48] Stockman MI, et al. Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations. Phys Rev Lett. 2004;92:057402. https://doi.org/10.1103/PhysRevLett.92.057402.
    [49] Bachelier G, et al. Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions. Phys Rev B. 2010;82:235403. https://doi.org/10.1103/PhysRevB.82.235403.
    [50] Butet J, et al. Optical second harmonic generation of single metallic nanoparticlesembedded in a homogeneous medium. Nano Lett. 2010;10:1717–21. https://doi.org/10.1021/nl1000949.
    [51] Zhang, et al. Three-dimensional nanostructures as highly efficient generators of second harmonic light. Nano Lett. 2011;11:5519–23. https://doi.org/10.1021/nl2033602.
    [52] Butet J, et al. Surface second-harmonic generation from coupled spherical plasmonic nanoparticles: eigenmode analysis and symmetry properties. Phys Rev B. 2014;89:245449. https://doi.org/10.1103/PhysRevB.89.245449.
    [53] Zhang T, et al. Coherent second harmonic generation enhanced by coherent plasmon-exciton coupling in plasmonic nanocavities. ACS Photonics. 2023;10:1529–37. https://doi.org/10.1021/acsphotonics.3c00105.
    [54] Hentschel M, et al. Quantitative modeling of the third harmonic emission spectrum of plasmonic nanoantennas. Nano Lett. 2012;12:3778–82. https://doi.org/10.1021/nl301686x.
    [55] Navarro-Cia M, Maier SA. Broad-band near-infrared plasmonic nanoantennas for higher harmonic generation. ACS Nano. 2012;6:3537–44. https://doi.org/10.1021/nn300565x.
    [56] Hajisalem G, et al. Probing the quantum tunneling limit of plasmonic enhancement by third harmonic generation. Nano Lett. 2014;14:6651–4. https://doi.org/10.1021/nl503324g.
    [57] Danckwerts M, Novotny L. Optical frequency mixing at coupled gold nanoparticles. Phys Rev Lett. 2007;98:026104. https://doi.org/10.1103/PhysRevLett.98.026104.
    [58] Biagioni P, et al. Dynamics of four-photon photoluminescence in gold nanoantennas. Nano Lett. 2012;12:2941–7. https://doi.org/10.1021/nl300616s.
    [59] Xu J, et al. Multiphoton upconversion enhanced by deep subwavelength near-field confinement. Nano Lett. 2021;21:3044–51. https://doi.org/10.1021/acs.nanolett.1c00232.
    [60] Butet J, et al. Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation. Nano Lett. 2013;13:1787–92. https://doi.org/10.1021/nl400393e.
    [61] Galanty M, et al. Second harmonic generation hotspot on a centrosymmetric smooth silver surface. Light Sci Appl. 2018;7:49. https://doi.org/10.1038/s41377-018-0053-6.
    [62] Berini P. Surface plasmon photodetectors and their applications. Laser Photonics Rev. 2014;8:197–220. https://doi.org/10.1002/lpor.201300019.
    [63] Wang J, et al. Saturable plasmonic metasurfaces for laser mode locking. Light Sci Appl. 2020;9:50. https://doi.org/10.1038/s41377-020-0291-2.
    [64] Zhang L, et al. Plug-and-play’ plasmonic metafibers for ultrafast fibre lasers. Light Adv Manufact. 2022;3:45. https://doi.org/10.37188/lam.2022.045.
    [65] Jin R, et al. Correlating second harmonic optical responses of single Ag nanoparticles with morphology. J Am Chem Soc. 2005;127:12482–3. https://doi.org/10.1021/ja0537169.
    [66] Butet J, et al. Three-dimensional mapping of single gold nanoparticles embedded in a homogeneous transparent matrix using optical second-harmonic generation. Opt Express. 2010;18:22314–23. https://doi.org/10.1364/OE.18.022314.
    [67] Accanto N, et al. Phase control of femtosecond pulses on the nanoscale using second harmonic nanoparticles. Light Sci Appl. 2014;3:e143–e143. https://doi.org/10.1038/lsa.2014.24.
    [68] Accanto N, et al. Capturing the optical phase response of nanoantennas by coherent second-harmonic microscopy. Nano Lett. 2014;14:4078–82. https://doi.org/10.1021/nl501588r.
    [69] Nuriya M, et al. Multimodal two-photon imaging using a second harmonic generation-specific dye. Nat Commun. 2016;7:11557. https://doi.org/10.1038/ncomms11557.
    [70] Zipfel WR, et al. Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol. 2003;21:1369–77. https://doi.org/10.1038/nbt899.
    [71] Lakowicz JR, et al. Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. Analyst. 2008;133:1308–46. https://doi.org/10.1039/b802918k.
    [72] Kauranen M, Zayats AV. Nonlinear plasmonics. Nat Photonics. 2012;6:737–48. https://doi.org/10.1038/nphoton.2012.244.
    [73] Metzger B, et al. Ultrafast nonlinear plasmonic spectroscopy: from dipole nanoantennas to complex hybrid plasmonic structures. ACS Photonics. 2016;3:1336–50. https://doi.org/10.1021/acsphotonics.5b00587.
    [74] Butet J, Martin OJ. Nonlinear plasmonic nanorulers. ACS Nano. 2014;8:4931–9. https://doi.org/10.1021/nn500943t.
    [75] Yang ZJ, et al. Efficient second harmonic generation in gold-silicon core-shell nanostructures. Opt Express. 2018;26:5835–44. https://doi.org/10.1364/OE.26.005835.
    [76] Ding SJ, et al. Magnetic plasmon-enhanced second-harmonic generation on colloidal gold nanocups. Nano Lett. 2019;19:2005–11. https://doi.org/10.1021/acs.nanolett.9b00020.
    [77] Hou J, et al. Self-induced transparency in a perfectly absorbing chiral second-harmonic generator. PhotoniX. 2022;3:22. https://doi.org/10.1186/s43074-022-00068-y.
    [78] Loudon R. The quantum theory of light. New York: Oxford University Press; 2000.
    [79] Shen YR. The principles of nonlinear optics. New York: Wiley; 1984.
    [80] Simon HJ, et al. Optical second-harmonic generation with surface plasmons in silver films. Phys Rev Lett. 1974;33:1531–4. https://doi.org/10.1103/PhysRevLett.33.1531.
    [81] Shan J, et al. Experimental study of optical second-harmonic scattering from spherical nanoparticles. Phys Rev A. 2006;73:023819. https://doi.org/10.1103/PhysRevA.73.023819.
    [82] Dadap JI. Optical second-harmonic scattering from cylindrical particles. Phys Rev B. 2008;78:205322. https://doi.org/10.1103/PhysRevB.78.205322.
    [83] Bloembergen N, et al. Optical second-harmonic generation in reflection from media with inversion symmetry. Phys Rev. 1968;174:813–22. https://doi.org/10.1103/PhysRev.174.813.
    [84] O’Brien K, et al. Predicting nonlinear properties of metamaterials from the linear response. Nat Mater. 2015;14:379–83. https://doi.org/10.1038/nmat4214.
    [85] Celebrano M, et al. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nature Nanotechnol. 2015;10:412–7. https://doi.org/10.1038/nnano.2015.69.
    [86] Linnenbank H, Linden S. Second harmonic generation spectroscopy on second harmonic resonant plasmonic metamaterials. Optica. 2015;2:698–701. https://doi.org/10.1364/optica.2.000698.
    [87] Metzger B, et al. Third-harmonic spectroscopy and modeling of the nonlinear response of plasmonic nanoantennas. Opt Lett. 2012;37:4741–3. https://doi.org/10.1364/ol.37.004741.
    [88] Demtroder W. Laser spectroscopy: basic concepts and instrumentation. New York: Springer; 2003.
    [89] Pu Y, et al. Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation. Phys Rev Lett. 2010;104:207402. https://doi.org/10.1103/PhysRevLett.104.207402.
    [90] Chen S, et al. Strong nonlinear optical activity induced by lattice surface modes on plasmonic metasurface. Nano Lett. 2019;19:6278–83. https://doi.org/10.1021/acs.nanolett.9b02417.
    [91] Hooper DC, et al. Second harmonic spectroscopy of surface lattice resonances. Nano Lett. 2019;19:165–72. https://doi.org/10.1021/acs.nanolett.8b03574.
    [92] Shen B, et al. Nonlinear spectral-imaging study of second- and third-harmonic enhancements by surface-lattice resonances. Adv Opt Mat. 2020;8:1901981. https://doi.org/10.1002/adom.201901981.
    [93] Spackova B, Homola J. Sensing properties of lattice resonances of 2D metal nanoparticle arrays: an analytical model. Opt Express. 2013;21:27490–502. https://doi.org/10.1364/oe.21.027490.
    [94] Smith EM, et al. Second harmonic generation enhancement of ITO-based ENZ materials and metasurfaces. MRS Adv. 2022;7:741–5. https://doi.org/10.1557/s43580-022-00353-9.
    [95] Argyropoulos C, et al. Giant second-harmonic generation efficiency and ideal phase matching with a double ε-near-zero cross-slit metamaterial. Phys Rev B. 2014;89:235401. https://doi.org/10.1103/PhysRevB.89.235401.
    [96] Deng J, et al. Giant enhancement of second-order nonlinearity of epsilon-near- zero medium by a plasmonic metasurface. Nano Lett. 2020;20:5421–7. https://doi.org/10.1021/acs.nanolett.0c01810.
    [97] Metzger B, et al. Strong enhancement of second harmonic emission by plasmonic resonances at the second harmonic wavelength. Nano Lett. 2015;15:3917–22. https://doi.org/10.1021/acs.nanolett.5b00747.
    [98] Thyagarajan K, et al. Enhanced second-harmonic generation from double resonant plasmonic antennae. Opt Express. 2012;20:12860–5. https://doi.org/10.1364/OE.20.012860.
    [99] Ren ML, et al. Giant enhancement of second harmonic generation by engineering double plasmonic resonances at nanoscale. Opt Express. 2014;22:28653–61. https://doi.org/10.1364/OE.22.028653.
    [100] Guo K, Guo Z. Enhanced second-harmonic generation from Fano like resonance in an asymmetric homodimer of gold elliptical nanodisks. ACS Omega. 2019;4:1757–62. https://doi.org/10.1021/acsomega.8b02986.
    [101] Chandrasekar R, et al. Second harmonic generation with plasmonic metasurfaces: direct comparison of electric and magnetic resonances. Opt Mat Expr. 2015;5:2682–91. https://doi.org/10.1364/ome.5.002682.
    [102] Linden S, et al. Collective effects in second-harmonic generation from split-ring-resonator arrays. Phys Rev Lett. 2012;109:015502. https://doi.org/10.1103/PhysRevLett.109.015502.
    [103] Tsai WY, et al. Second Harmonic Light Manipulation with Vertical Split Ring Resonators. Adv Mat. 2019;31:1806479. https://doi.org/10.1002/adma.201806479.
    [104] Valev VK, et al. Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures. Nano Lett. 2009;9:3945–8. https://doi.org/10.1021/nl9021623.
    [105] Valev VK, et al. Plasmons reveal the direction of magnetization in nickel nanostructures. ACS Nano. 2011;5:91–6. https://doi.org/10.1021/nn102852b.
    [106] Husu H, et al. Metamaterials with tailored nonlinear optical response. Nano Lett. 2012;12:673–7. https://doi.org/10.1021/nl203524k.
    [107] Canfield BK, et al. Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers. Nano Lett. 2007;7:1251–5. https://doi.org/10.1021/nl0701253.
    [108] Xu T, et al. Second-harmonic emission from sub-wavelength apertures: effects of aperture symmetry and lattice arrangement. Opt Express. 2007;15:13894–906. https://doi.org/10.1364/oe.15.013894.
    [109] Schon P, et al. Enhanced second-harmonic generation from individual metallic nanoapertures. Opt Lett. 2010;35:4063–5. https://doi.org/10.1364/OL.35.004063.
    [110] Berthelot J, et al. Silencing and enhancement of second-harmonic generation in optical gap antennas. Opt Express. 2012;20:10498–508. https://doi.org/10.1364/OE.20.010498.
    [111] Viarbitskaya S, et al. Delocalization of nonlinear optical responses in plasmonic nanoantennas. Phys Rev Lett. 2015;115:197401. https://doi.org/10.1103/PhysRevLett.115.197401.
    [112] Grosse NB, et al. Nonlinear plasmon-photon interaction resolved by k-space spectroscopy. Phys Rev Lett. 2012;108:136802. https://doi.org/10.1103/PhysRevLett.108.136802.
    [113] Li Y, et al. Transversely divergent second harmonic generation by surface plasmon polaritons on single metallic nanowires. Nano Lett. 2017;17:7803–8. https://doi.org/10.1021/acs.nanolett.7b04016.
    [114] Imura K, et al. Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes. J Phys Chem B. 2005;109:13214–20. https://doi.org/10.1021/jp051631o.
    [115] Rosei R, Lynch DW. Thermomodulation spectra of Al, Au, and Cu. Phys Rev B. 1972;5:3883–94. https://doi.org/10.1103/PhysRevB.5.3883.
    [116] Rosei R, et al. d bands position and width in gold from very low temperature thermomodulation measurements. Surf Sci. 1973;37:689–99. https://doi.org/10.1016/0039-6028(73)90359-2.
    [117] Rosei R, et al. Temperature modulation of the optical transitions involving the Fermi surface in Ag: experimental. Phys Rev B. 1974;10:484–9. https://doi.org/10.1103/PhysRevB.10.484.
    [118] Guerrisi M, et al. Splitting of the interband absorption edge in Au. Phys Rev B. 1975;12:557–63. https://doi.org/10.1103/PhysRevB.12.557.
    [119] Hohlfeld J, et al. Electron and lattice dynamics following optical excitation of metals. Chem Phys. 2000;251:237–58. https://doi.org/10.1016/s0301-0104(99)00330-4.
    [120] Hu H, et al. Plasmon-modulated photoluminescence of individual gold nanostructures. ACS Nano. 2012;6:10147–55. https://doi.org/10.1021/nn3039066.
    [121] Jiang XF, et al. Excitation nature of two-photon photoluminescence of gold nanorods and coupled gold nanoparticles studied by two-pulse emission modulation spectroscopy. J Phys Chem Lett. 2013;4:1634–8. https://doi.org/10.1021/jz400582h.
    [122] Horneber A, et al. Nonlinear optical imaging of single plasmonic nanoparticles with 30 nm resolution. Phys Chem Chem Phys. 2015;17:21288–93. https://doi.org/10.1039/c4cp05342g.
    [123] Wang N, et al. Ultrafast laser melting of Au nanoparticles: atomistic simulations. J Nanopart Res. 2011;13:4491–509. https://doi.org/10.1007/s11051-011-0402-3.
    [124] Zeni C, et al. Data-driven simulation and characterisation of gold nanoparticle melting. Nat Commun. 2021;12:6056. https://doi.org/10.1038/s41467-021-26199-7.
    [125] Wang J, et al. Approach and coalescence of gold nanoparticles driven by surface thermodynamic fluctuations and atomic interaction forces. ACS Nano. 2016;10:2893–902. https://doi.org/10.1021/acsnano.5b08236.
    [126] Anger P, et al. Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett. 2006;96:113002. https://doi.org/10.1103/PhysRevLett.96.113002.
    [127] Viste P, et al. Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources. ACS Nano. 2010;4:759–64. https://doi.org/10.1021/nn901294d.
    [128] Shahbazyan TV. Theory of plasmon-enhanced metal photoluminescence. Nano Lett. 2013;13:194–8. https://doi.org/10.1021/nl303851z.
    [129] Shahbazyan TV, et al. Size-dependent surface plasmon dynamics in metal nanoparticles. Phys Rev Lett. 1998;81:3120–3. https://doi.org/10.1103/PhysRevLett.81.3120.
    [130] Dulkeith E, et al. Plasmon emission in photoexcited gold nanoparticles. Phys Rev B. 2004;70:205424. https://doi.org/10.1103/PhysRevB.70.205424.
    [131] Fang Y, et al. Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio. ACS Nano. 2012;6:7177–84. https://doi.org/10.1021/nn3022469.
    [132] Biagioni P, et al. Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration. Phys Rev B. 2009;80:045411. https://doi.org/10.1103/PhysRevB.80.045411.
    [133] Wang QQ, et al. Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region. Nano Lett. 2007;7:723–8. https://doi.org/10.1021/nl062964f.
    [134] Ma Z, et al. Origin of the avalanche-like photoluminescence from metallic nanowires. Sci Rep. 2016;6:18857. https://doi.org/10.1038/srep18857.
    [135] Gong HM, et al. Strong near-infrared avalanche photoluminescence from Ag nanowire arrays. Plasmonics. 2008;3:59–64. https://doi.org/10.1007/s11468-008-9054-2.
    [136] Song M, et al. Polarization properties of surface plasmon enhanced photoluminescence from a single Ag nanowire. Opt Express. 2012;20:22290–7. https://doi.org/10.1364/OE.20.022290.
    [137] Wang J, et al. Hot carrier-mediated avalanche multiphoton photoluminescence from coupled Au-Al nanoantennas. J Chem Phys. 2021;154:074701. https://doi.org/10.1063/5.0032611.
    [138] Hellwarth R, Christensen P. Nonlinear optical microscopic examination of structure in polycrystalline ZnSe. Opt Commun. 1974;12:318–22. https://doi.org/10.1016/0030-4018(74)90024-8.
    [139] Pavone FS, Campagnola PJ. Second harmonic generation imaging. New York: CRC Press; 2016.
    [140] Carvalho BR, et al. Nonlinear dark-field imaging of one-dimensional defects in monolayer dichalcogenides. Nano Lett. 2020;20:284–91. https://doi.org/10.1021/acs.nanolett.9b03795.
    [141] Oka H. Highly-efficient entangled two-photon absorption with the assistance of plasmon nanoantenna. J Phys B: Atomic, Mol Opt Phys. 2015;48:115503. https://doi.org/10.1088/0953-4075/48/11/115503.
    [142] Smolyaninov A, et al. Plasmonic enhanced two-photon absorption in silicon photodetectors for optical correlators in the near-infrared. Opt Lett. 2016;41:4445–8. https://doi.org/10.1364/OL.41.004445.
    [143] Kong L, et al. A novel flurophore-cyano-carboxylic-Ag microhybrid: Enhanced two photon absorption for two-photon photothermal therapy of HeLa cancer cells by targeting mitochondria. Biosens Bioelectron. 2018;108:14–9. https://doi.org/10.1016/j.bios.2018.02.028.
    [144] Li JL, Gu M. Surface plasmonic gold nanorods for enhanced two-photon microscopic imaging and apoptosis induction of cancer cells. Biomaterials. 2010;31:9492–8. https://doi.org/10.1016/j.biomaterials.2010.08.068.
    [145] Vickers ET, et al. Two-photon photoluminescence and photothermal properties of hollow gold nanospheres for efficient theranostic applications. J Phys Chem C. 2017;122:13304–13. https://doi.org/10.1021/acs.jpcc.7b09055.
    [146] Kang Z, et al. Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers. Appl Phys Lett. 2013;103:4. https://doi.org/10.1063/1.4816516.
    [147] Wang X-D, et al. Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser. Appl Phys Lett. 2014;105:16. https://doi.org/10.1063/1.4899133.
    [148] Shu Y, et al. Gold nanorods as saturable absorber for harmonic soliton molecules generation. Front Chem. 2019;7:715. https://doi.org/10.3389/fchem.2019.00715.
    [149] Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nat Mater. 2010;9:205–13. https://doi.org/10.1038/nmat2629.
    [150] Wang F, Melosh NA. Plasmonic energy collection through hot carrier extraction. Nano Lett. 2011;11:5426–30. https://doi.org/10.1021/nl203196z.
    [151] Goykhman I, et al. Locally oxidized silicon surface-plasmon Schottky detector for telecom regime. Nano Lett. 2011;11:2219–24. https://doi.org/10.1021/nl200187v.
    [152] Berini P, et al. Thin Au surface plasmon waveguide Schottky detectors on p-Si. Nanotechnology. 2012;23:444011. https://doi.org/10.1088/0957-4484/23/44/444011.
    [153] Knight MW, et al. Photodetection with active optical antennas. Science. 2011;332:702–4. https://doi.org/10.1126/science.1203056.
    [154] Knight MW, et al. Embedding plasmonic nanostructure diodes enhances hot electron emission. Nano Lett. 2013;13:1687–92. https://doi.org/10.1021/nl400196z.
    [155] Huang X, et al. Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater. 2009;21:4880–910. https://doi.org/10.1002/adma.200802789.
    [156] Yang X, et al. Gold Nanomaterials at work in biomedicine. Chem Rev. 2015;115:10410–88. https://doi.org/10.1021/acs.chemrev.5b00193.
    [157] Olesiak-Banska J, et al. Two-photon absorption and photoluminescence of colloidal gold nanoparticles and nanoclusters. Chem Soc Rev. 2019;48:4087–117. https://doi.org/10.1039/c8cs00849c.
    [158] Zheng J, et al. Gold Nanorods: The most versatile plasmonic nanoparticles. Chem Rev. 2021;121:13342–453. https://doi.org/10.1021/acs.chemrev.1c00422.
    [159] Durr NJ, et al. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett. 2007;7:941–5. https://doi.org/10.1021/nl062962v.
    [160] Chen S, et al. Symmetry-selective third-harmonic generation from plasmonic metacrystals. Phys Rev Lett. 2014;113:033901. https://doi.org/10.1103/PhysRevLett.113.033901.
    [161] Li G, et al. Continuous control of the nonlinearity phase for harmonic generations. Nat Mater. 2015;14:607–12. https://doi.org/10.1038/nmat4267.
    [162] Li G, et al. Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation. Nano Lett. 2017;17:7974–9. https://doi.org/10.1021/acs.nanolett.7b04451.
    [163] Li Z, et al. Tripling the capacity of optical vortices by nonlinear metasurface. Laser Photonics Rev. 2018;12:1800164. https://doi.org/10.1002/lpor.201800164.
    [164] Liu L, et al. Backward phase matching for second harmonic generation in negative-index conformal surface plasmonic metamaterials. Adv Sci. 2018;5:1800661. https://doi.org/10.1002/advs.201800661.
    [165] Forbes A, et al. Structured light. Nat Photonics. 2021;15:253–62. https://doi.org/10.1038/s41566-021-00780-4.
    [166] Liu L, et al. Plasmon-induced thermal tuning of few-exciton strong coupling in 2D atomic crystals. Optica. 2021;8:11. https://doi.org/10.1364/optica.436140.
    [167] Sit A, et al. High-dimensional intracity quantum cryptography with structured photons. Optica. 2017;4:9. https://doi.org/10.1364/optica.4.001006.
    [168] Zhu Z, et al. Compensation-free high-dimensional free-space optical communication using turbulence-resilient vector beams. Nat Commun. 2021;12:1666. https://doi.org/10.1038/s41467-021-21793-1.
    [169] Weber M, et al. MINSTED nanoscopy enters the Angstrom localization range. Nat Biotechnol. 2023;41:569–76. https://doi.org/10.1038/s41587-022-01519-4.
    [170] Woerdemann M, et al. Optical assembly of microparticles into highly ordered structures using Ince-Gaussian beams. Appl Phys Lett. 2011;98:11. https://doi.org/10.1063/1.3561770.
    [171] Yang Y, et al. Optical trapping with structured light: a review. Adv Photonics. 2021;3:034001. https://doi.org/10.1117/1.Ap.3.3.034001.
    [172] Yeshchenko OA, et al. Temperature dependence of the surface plasmon resonance in gold nanoparticles. Surf Sci. 2013;608:275–81. https://doi.org/10.1016/j.susc.2012.10.019.
    [173] Judek J, et al. Titanium nitride as a plasmonic material from near-ultraviolet to very-long-wavelength infrared range. Materials (Basel). 2021;14:22. https://doi.org/10.3390/ma14227095.
    [174] He W, et al. Plasmonic titanium nitride nanoparticles for in vivo photoacoustic tomography imaging and photothermal cancer therapy. Biomaterials. 2017;132:37–47. https://doi.org/10.1016/j.biomaterials.2017.04.007.
    [175] Chang CC, et al. Highly plasmonic titanium nitride by room-temperature sputtering. Sci Rep. 2019;9:15287. https://doi.org/10.1038/s41598-019-51236-3.
    [176] Luo J, et al. Tailored organic electro-optic materials and their hybrid systems for device applications. Chem Mater. 2010;23:544–53. https://doi.org/10.1021/cm1022344.
    [177] Melikyan A, et al. High-speed plasmonic phase modulators. Nat Photonics. 2014;8:229–33. https://doi.org/10.1038/nphoton.2014.9.
    [178] Karst J, et al. Electrically switchable metallic polymer nanoantennas. Science. 2021;374:612–6. https://doi.org/10.1126/science.abj3433.
  • 加载中
图(1)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  1
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-22
  • 录用日期:  2023-08-17
  • 修回日期:  2023-07-27
  • 网络出版日期:  2023-10-05

目录

    /

    返回文章
    返回