留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Frequency selective fngerprint sensor: the Terahertz unity platform for broadband chiral enantiomers multiplexed signals and narrowband molecular AIT enhancement

Frequency selective fngerprint sensor: the Terahertz unity platform for broadband chiral enantiomers multiplexed signals and narrowband molecular AIT enhancement[J]. PhotoniX. doi: 10.1186/s43074-023-00108-1
引用本文: Frequency selective fngerprint sensor: the Terahertz unity platform for broadband chiral enantiomers multiplexed signals and narrowband molecular AIT enhancement[J]. PhotoniX. doi: 10.1186/s43074-023-00108-1
Jiaming Lv, Shengyuan Shen, Lin Chen, Yiming Zhu, Songlin Zhuang. Frequency selective fngerprint sensor: the Terahertz unity platform for broadband chiral enantiomers multiplexed signals and narrowband molecular AIT enhancement[J]. PhotoniX. doi: 10.1186/s43074-023-00108-1
Citation: Jiaming Lv, Shengyuan Shen, Lin Chen, Yiming Zhu, Songlin Zhuang. Frequency selective fngerprint sensor: the Terahertz unity platform for broadband chiral enantiomers multiplexed signals and narrowband molecular AIT enhancement[J]. PhotoniX. doi: 10.1186/s43074-023-00108-1

Frequency selective fngerprint sensor: the Terahertz unity platform for broadband chiral enantiomers multiplexed signals and narrowband molecular AIT enhancement

doi: 10.1186/s43074-023-00108-1

Frequency selective fngerprint sensor: the Terahertz unity platform for broadband chiral enantiomers multiplexed signals and narrowband molecular AIT enhancement

Funds: The authors acknowledge support from Dr. Abhishek Kumar from Nanyang Technological University for his fruitful discussions.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Tseng Y-T, Chang H-Y, Harroun SG, Wu C-W, Wei S-C, Yuan Z, Chou H-L, Chen C-H, Huang C-C, Chang H-T. Self-assembled chiral gold Supramolecules with efficient laser absorption for Enantiospecific recognition of carnitine. Anal Chem. 2018;90:7283–91.
    [2] Ryu DH, Cho JY, Sadiq NB, Kim J-C, Lee B, Hamayun M, Lee TS, Kim HS, Park SH, Nho CW, Kim H-Y. Optimization of antioxidant, anti-diabetic, and anti-inflammatory activities and ganoderic acid content of differentially dried Ganoderma lucidum using response surface methodology. Food Chem. 2021;335:127645.
    [3] Griboff J, Carrizo JC, Bonansea RI, Valdés ME, Wunderlin DA, Amé MV. Multiantibiotic residues in commercial fish from Argentina. The presence of mixtures of antibiotics in edible fish, a challenge to health risk assessment. Food Chem. 2020;332:127380.
    [4] Begin JL, Alsaawy M, Bhardwaj R. Chiral discrimination by recollision enhanced femtosecond laser mass spectrometry. Sci Rep. 2020;10:14074.
    [5] Stolarska M, Bocian W, Sitkowski J, Naumczuk B, Bednarek E, Popławska M, Błażewicz A, Kozerski L. Cathinones - Routine NMR methodology for enantiomer discrimination and their absolute stereochemistry assignment, using R-BINOL. J Mol Struct. 2020;1219:128575.
    [6] Simmen B, Weymuth T, Reiher M. How many chiral centers can Raman optical activity spectroscopy distinguish in a molecule. J Phys Chem A. 2012;116(22):5410–9.
    [7] Wang Z, Peng Y, Shi C, Wang L, Chen X, Wu W, Wu X, Zhu Y, Zhang J, Cheng G, Zhuang S. Qualitative and quantitative recognition of chiral drugs based on terahertz spectroscopy. Analyst. 2021;146:3888.
    [8] Losman J-A, Looper RE, Koivunen P, Lee S, Schneider RK, McMahon C, Cowley GS, Root DE, Ebert BL, Kaelin WG. (R)-2-Hydroxyglutarate Is Sufficient to Promote Leukemogenesis and Its Effects Are Reversible. Science. 2013;339:1621.
    [9] Liu K, Brown MG, Saykally RJ. Terahertz laser vibration rotation tunneling spectroscopy and dipole moment of a cage form of the water hexamer. J Phys Chem A. 1997;101(48):8995–9010.
    [10] Markelz AG, Roitberg A, Heilweil EJ. Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz. Chem Phys Lett. 2000;320:42–8.
    [11] Nguyen KL, Friščić T, Day GM, Gladden LF, Jones W. Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation. Nat Mater. 2007;6(3):206–9.
    [12] Fasman GD, Bodenheimer E, Lindblow C. Optical rotatory dispersion studies of Poly-L-tyrosine and copolymers of L-glutamic acid and L-tyrosine. Significance of the tyrosyl Cotton effects with respect to protein conformation. Biochemistry. 1964;3(11):1665–74.
    [13] Zhang Z, Zhong C, Fan F, Liu G, Chang S. Terahertz polarization and chirality sensing for amino acid solution based on chiral metasurface sensor. Sens Actuators, B Chem. 2021;330:129315.
    [14] Quesada-Moreno MM, Virgili A, Monteagudo E, Claramunt RM, Aviles-Moreno JR, Lopez-Gonzalez JJ, Alkorta I, Elguero J. A vibrational circular dichroism (VCD) methodology for the measurement of enantiomeric excess in chiral compounds in the solid phase and for the complementary use of NMR and VCD techniques in solution: The camphor case. Analyst. 2018;143:1406–16.
    [15] Xu J, Liao D, Gupta M, Zhu Y, Zhuang S, Singh R, Chen L. Terahertz microfluidic sensing with dual-torus toroidal Metasurfaces. Adv Optical Mater. 2021;9:2100024.
    [16] Gupta M, Singh R. Terahertz Sensing with Optimized Q/Veff Metasurface Cavities. Adv Optical Mater. 2020;8:1902025.
    [17] Shih K, Pitchappa P, Manjappa M, Ho CP, Singh R, Lee C. Microfluidic metamaterial sensor: Selective trapping and remote sensing of microparticles. J Appl Phys. 2017;121:023102.
    [18] Tan TC, Srivastava YK, et al. Active Control of Nanodielectric-Induced THz Quasi-BIC in Flexible Metasurfaces: A Platform for Modulation and Sensing. Adv Mater. 2021;9:2100836.
    [19] Kumar A, et al. Topological sensor on a silicon chip. Appl Phys Lett. 2022;121:011101.
    [20] Manjappa M, Pitchappa P, Wang N, Lee C, Singh R. Active Control of Resonant Cloaking in a Terahertz MEMS Metamaterial. Adv Optical Mater. 2018;6:1800141.
    [21] Chen L, Liao D, Guo X, Zhao J, Zhu Y, Zhuang S. Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review. Front Inf Technol Electron Eng. 2019;20(5):591–607.
    [22] Lin S, Xinlong Xu, Fangrong Hu, Chen Z, Wang Y, Zhang L, Peng Z, Li D, Zeng L, Chen Y, Wang Z. Using antibody modified terahertz metamaterial biosensor to detect concentration of carcinoembryonic antigen. IEEE J Sel Top Quantum Electron. 2020;27(4):6900207.
    [23] Lin S, Wang Y, Peng Z, Chen Z, Fangrong Hu. Detection of cancer biomarkers CA125 and CA199 via terahertz metasurface immunosensor. Talanta. 2022;248:123628.
    [24] Zeng Q, Liu W, Lin S, Chen Z, Zeng L, Fangrong Hu. Aptamer HB5 modified terahertz metasurface biosensor used for specific detection of HER2. Sens Actuators, B Chem. 2022;355:131337.
    [25] Shen F, Qin J, Han Z. Planar antenna array as a highly sensitive terahertz sensor. Appl Opt. 2019;58:540–4.
    [26] Xie J, Zhu X, Zang X, Cheng Q, Chen L, Zhu Y. Metamaterial-enhanced terahertz vibrational spectroscopy for thin film detection. Optical Materials Express. 2018;8(1):128–35.
    [27] Tittl A, Leitis A, Liu M, Yesilkoy F, Choi D-Y, Neshev DN, Kivshar YS, Altug H. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science. 2018;360:1105.
    [28] Leitis A, Tittl A, Liu M, Lee BH, Gu MB, Kovshar YS, Altug H. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval. Sci Adv. 2019;5:eaaw2871.
    [29] Zhu J, Jiang S, Xie Y, Li F, Du L, Meng K, Zhu L, Zhou J. Enhancing terahertz molecular fingerprint detection by a dielectric metagrating. Opt Lett. 2020;45:2335.
    [30] Xie Y, Ma Y, Liu X, Khan SA, Chen W, Zhu L, Zhu J, Liu Q. Dual-degree of freedom multiplexed Metasensor based on quasi-BICs for boosting broadband trace isomer detection by THz Molecular Fingerprint. IEEE J Sel Top Quantum Electron. 2023;29(5):8600110.
    [31] Rodrigo SG, Garcia-Vidal FJ, Martin-Moreno L. Theory of absorption-induced transparency. Phys Rev B. 2013;88:155126.
    [32] Hutchison JA, O’Carroll DM, Schwartz T, Genet C, Ebbesen TW. Absorption-induced transparency. Angew Chem Int Ed. 2011;50(9):2085–9.
    [33] Chen L, Xu N, Singh L, Cui T, Singh R, Zhu Y, Zhang W. Defect-induced Fano resonances in corrugated plasmonic metamaterials. Adv Opt Mater. 2017;5(8):1600960.
    [34] Chen L, Wei Y, Zang X, Zhu Y, Zhuang S. Excitation of dark multipolar plasmonic resonances at terahertz frequencies. Sci Rep. 2016;6:22027.
    [35] Nolte DD, Lange AE, Richards PL. Far-infrared dichroic bandpass filters. Appl Opt. 1985;24(10):1541.
    [36] Lin Y, Yao H, Ju X, Chen Y, Zhong S, Wang X. Free-standing double-layer terahertz bandpass filters fabricated by femtosecond laser micro-machining. Opt Express. 2017;25:25125–34.
    [37] Sun P, Zou Y. Complex dielectric properties of anhydrous polycrystalline glucose in the terahertz region. Opt Quantum Electron. 2016;48:1–10.
    [38] Ng B, Hanham SM, Wu J, Fernandez-Domnguez AI, Klein N, Liew YF, Breese M, Hong M, Maier SA. Broadband Terahertz Sensing on Spoof Plasmon Surfaces. ACS Photonics. 2014;1:1059–67.
    [39] Hu S, Sun C, Wu X, Peng Y. Polarization-Independent Terahertz Surface Plasmon resonance biosensor for species identification of Panax and Paeonia. Photonics. 2023;10:250.
    [40] Xie Y, Liu X, Li F, Zhu J, Feng N. Ultra-wideband enhancement on mid-infrared fingerprint sensing for 2D materials and analytes of monolayers by a metagrating. Nanophotonics. 2020;9:2927–35.
    [41] Sun L, Xu L, Wang J, Jiao Y, Ma Z, Ma Z, Chang C, Yang X, Wang R. A pixelated frequency-agile metasurface for broadband terahertz molecular fingerprint sensing. Nanoscale. 2022;14:9681.
    [42] Pitchappa P, Kumar A, Liang H, Prakash S, Wang N, Bettiol AA, Venkatesan T, Lee C, Singh R, Metamaterials F-A. Adv Optical Mater. 2020;8:2000101.
    [43] Xiaofei Z, Bingshuang Y, Lin C, Jingya X, Xuguang G, Alexei VB, Alexander PS, Songlin Z. Metasurfaces for manipulating terahertz waves. Light Adv Manuf. 2021;2:10.
    [44] Zhu Y, Zang X, Chi H, Zhou Y, Zhu Y, Zhuang S. Metasurfaces designed by a bidirectional deep neural network and iterative algorithm for generating quantitative field distributions. Light Adv Manuf. 2023;4:9.
    [45] Peng Y, Huang J, Luo J, Yang Z, Liping Wang XuWu, Zang X, Chen Yu, Min Gu, Qing Hu, Zhang X, Zhu Y, Zhuang S. Three-step one-way model in terahertz biomedical detection. PhotoniX. 2021;2:12.
  • 加载中
图(1)
计量
  • 文章访问数:  47
  • HTML全文浏览量:  2
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-05
  • 录用日期:  2023-09-07
  • 修回日期:  2023-09-02
  • 网络出版日期:  2023-09-19

目录

    /

    返回文章
    返回