留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Full degree-of-freedom polarization hologram by freeform exposure and inkjet printing

Full degree-of-freedom polarization hologram by freeform exposure and inkjet printing[J]. PhotoniX. doi: 10.1186/s43074-023-00111-6
引用本文: Full degree-of-freedom polarization hologram by freeform exposure and inkjet printing[J]. PhotoniX. doi: 10.1186/s43074-023-00111-6
Jianghao Xiong, Haizheng Zhong, Dewen Cheng, Shin-Tson Wu, Yongtian Wang. Full degree-of-freedom polarization hologram by freeform exposure and inkjet printing[J]. PhotoniX. doi: 10.1186/s43074-023-00111-6
Citation: Jianghao Xiong, Haizheng Zhong, Dewen Cheng, Shin-Tson Wu, Yongtian Wang. Full degree-of-freedom polarization hologram by freeform exposure and inkjet printing[J]. PhotoniX. doi: 10.1186/s43074-023-00111-6

Full degree-of-freedom polarization hologram by freeform exposure and inkjet printing

doi: 10.1186/s43074-023-00111-6

Full degree-of-freedom polarization hologram by freeform exposure and inkjet printing

Funds: The authors would like to thank Synopsys for providing the educational license of Code V.
  • [1] Gabor D. A New microscopic principle. Nature. 1948;161:777–8. https://doi.org/10.1038/161777a0.
    [2] Cooke DJ, Ward AA. Reflection-hologram processing for high efficiency in silver-halide emulsions. Appl Opt. 1984;23:934–41. https://doi.org/10.1364/AO.23.000934.
    [3] Chang BJ, Leonard CD. Dichromated gelatin for the fabrication of holographic opticalelements. Appl Opt. 1979;18:2407–17. https://doi.org/10.1364/AO.18.002407.
    [4] Beesley MJ, Castledine JG. The use of photoresist as a holographic recording medium. Appl Op. 1970;9:2720–4. https://doi.org/10.1364/AO.9.002720.
    [5] Hesselink L, et al. Photorefractive materials for nonvolatile volume holographic data storage. Science. 1998;282:1089–94. https://doi.org/10.1126/science.282.5391.1089.
    [6] Colburn WS, Haines KA. Volume hologram formation in photopolymer materials. Appl Opt. 1971;10:1636–41. https://doi.org/10.1364/AO.10.001636.
    [7] Hariharan P. Optical Holography: Principles, Techniques and Applications. 2nd ed. Cambridge: Cambridge University Press; 1996. https://doi.org/10.1017/CBO9781139174039.
    [8] Chang C, Bang K, Wetzstein G, Lee B, Gao L. Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective. Optica. 2020;7:1563–78. https://doi.org/10.1364/OPTICA.406004.
    [9] Chigrinov VG, Kozenkov VM & Kwok HS. Photoalignment of liquid crystalline materials: physics and applications. Hoboken: Wiley; 2008. https://onlinelibrary.wiley.com/doi/book/10.1002/9780470751800.
    [10] Schadt M, Seiberle H, Schuster A. Optical patterning of multi-domain liquid-crystal displays with wide viewing angles. Nature. 1996;381:212–5. https://doi.org/10.1038/381212a0.
    [11] Xiong J, Wu S-T. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications. eLight. 2021;1:3. https://doi.org/10.1186/s43593-021-00003-x.
    [12] Crawford GP, Eakin JN, Radcliffe MD, Callan-Jones A, Pelcovits RA. Liquid-crystal diffraction gratings using polarization holography alignment techniques. J Appl Phys. 2005;98:123102. https://doi.org/10.1063/1.2146075.
    [13] Sarkissian H, Park B, Tabirian N, Zeldovich B. Periodically aligned liquid crystal: potential application for projection displays. Mol Cryst Liq Cryst. 2006;451:1–19. https://doi.org/10.1080/154214090959957.
    [14] Kobashi J, Yoshida H, Ozaki M. Planar optics with patterned chiral liquid crystals. Nat Photonics. 2016;10:389–92. https://doi.org/10.1038/nphoton.2016.66.
    [15] Barboza R, Bortolozzo U, Clerc MG, Residori S. Berry phase of light under bragg reflection by chiral liquid-crystal Media. Phys Rev Lett. 2016;117:053903. https://doi.org/10.1103/PhysRevLett.117.053903.
    [16] Lee YH, He Z, Wu ST. Optical properties of reflective liquid crystal polarization volume gratings. J Opt Soc Am. 2019;B 36:D9–12. https://doi.org/10.1364/JOSAB.36.0000D9.
    [17] Xiong J, Chen R, Wu S-T. Device simulation of liquid crystal polarization gratings. Opt Express. 2019;27:18102–12. https://doi.org/10.1364/OE.27.018102.
    [18] Wu H, et al. Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system. Opt Express. 2012;20:16684–9. https://doi.org/10.1364/OE.20.016684.
    [19] Kim J, et al. Fabrication of ideal geometric-phase holograms with arbitrary wavefronts. Optica. 2015;2:958–64. https://doi.org/10.1364/OPTICA.2.000958.
    [20] Cakmakci O, Rolland J. Head-worn displays: a review. J Disp Technol. 2006;2:199–216. https://doi.org/10.1109/JDT.2006.879846.
    [21] Jang C, et al. Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina. ACM Trans Graph. 2017;36:190. https://doi.org/10.1145/3130800.3130889.
    [22] Maimone A, Georgiou A, Kollin JS. Holographic near-eye displays for virtual and augmented reality. ACM Trans Graph. 2017;36:85. https://doi.org/10.1145/3072959.3073624.
    [23] Park JH, Kim SB. Optical see-through holographic near-eye-display with eyebox steering and depth of field control. Opt Express. 2018;26:27076–88. https://doi.org/10.1364/OE.26.027076.
    [24] Xiong J, Li Y, Li K, Wu S-T. Aberration-free pupil steerable Maxwellian display for augmented reality with cholesteric liquid crystal holographic lenses. Opt Lett. 2021;46:1760–3. https://doi.org/10.1364/OL.422559.
    [25] Yang Q, Li Y, Ding Y & Wu ST. Compact Foveated AR Displays with Polarization Selective Planar Lenses. ACS Appl Opt Mater. 2023. https://doi.org/10.1021/acsaom.2c00203
    [26] Rolland JP, et al. Freeform optics for imaging. Optica. 2021;8:161–76. https://doi.org/10.1364/OPTICA.413762.
    [27] Jang C, et al. Design and fabrication of freeform holographic optical elements. ACM Trans Graph. 2020;39:1–15.
    [28] Yang T, Wang Y, Ni D, Cheng D, Wang Y. Design of off-axis reflective imaging systems based on freeform holographic elements. Opt Express. 2022;30:20117–34. https://doi.org/10.1364/OE.460351.
    [29] Kotikian A, Truby RL, Boley JW, White TJ, Lewis JA. 3D Printing of liquid crystal elastomeric actuators with spatially programed nematic order. Adv Mater. 2018;30:1706164. https://doi.org/10.1002/adma.201706164.
    [30] Gantenbein S, et al. Three-dimensional printing of hierarchical liquid-crystal-polymer structures. Nature. 2018;561:226–30. https://doi.org/10.1038/s41586-018-0474-7.
    [31] Wu L, Dong Z, Li F, Zhou H, Song Y. Emerging progress of inkjet technology in printing optical materials. Adv Opt Mater. 2016;4:1915–32. https://doi.org/10.1002/adom.201600466.
    [32] Minemawari H, et al. Inkjet printing of single-crystal films. Nature. 2011;475:364–7. https://doi.org/10.1038/nature10313.
    [33] Gorter H, et al. Toward inkjet printing of small molecule organic light emitting diodes. Thin Solid Films. 2013;532:11–5. https://doi.org/10.1016/j.tsf.2013.01.041.
    [34] Liu Z, et al. Micro-light-emitting diodes with quantum dots in display technology. Light Sci Appl. 2020;9:83. https://doi.org/10.1038/s41377-020-0268-1.
    [35] Zhang Q, et al. Fabrication of bragg mirrors by multilayer inkjet printing. Adv Mater. 2022;34:2201348. https://doi.org/10.1002/adma.202201348.
    [36] Hoath SD. Fundamentals of Inkjet Printing: The Science of Inkjet and Droplets. Hoboken: Wiley; 2016. https://onlinelibrary.wiley.com/doi/book/10.1002/9783527684724.
    [37] Dąbrowski R, Kula P, Herman J. High Birefringence Liquid Crystals. Crystals. 2013;3:443–82.
    [38] Dąbrowski R, et al. Low viscosity, high birefringence liquid crystalline compounds and mixtures. Opto-Electron Rev. 2007;15:47–51. https://doi.org/10.2478/s11772-006-0055-4.
    [39] Shi Y, et al. High Photoinduced ordering and controllable photostability of hydrophilic Azobenzene material based on relative humidity. Langmuir. 2018;34:4465–72. https://doi.org/10.1021/acs.langmuir.8b00039.
    [40] Xiong J, Wu S-T. Rigorous coupled-wave analysis of liquid crystal polarization gratings. Opt Express. 2020;28:35960–71. https://doi.org/10.1364/OE.410271.
    [41] Moharam MG, Gaylord TK. Rigorous coupled-wave analysis of planar-grating diffraction. J Opt Soc Am. 1981;71:811–8. https://doi.org/10.1364/JOSA.71.000811.
    [42] Wu S-T. Birefringence dispersions of liquid crystals. Phys Rev. 1986;A 33:1270–4. https://doi.org/10.1103/PhysRevA.33.1270.
  • 加载中
图(1)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  6
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-18
  • 录用日期:  2023-09-27
  • 修回日期:  2023-08-15
  • 网络出版日期:  2023-10-13

目录

    /

    返回文章
    返回