Chip-to-chip optical multimode communication with universal mode processors
doi: 10.1186/s43074-023-00114-3
Chip-to-chip optical multimode communication with universal mode processors
-
Abstract:
The increasing amount of data exchange requires higher-capacity optical communication links. Mode division multiplexing (MDM) is considered as a promising technology to support the higher data throughput. In an MDM system, the mode generator and sorter are the backbone. However, most of the current schemes lack the programmability and universality, which makes the MDM link susceptible to the mode crosstalk and environmental disturbances. In this paper, we propose an intelligent multimode optical communication link using universal mode processing (generation and sorting) chips. The mode processor consists of a programmable 4 × 4 Mach Zehnder interferometer (MZI) network and can be intelligently configured to generate or sort both quasi linearly polarized (LP) modes and orbital angular momentum (OAM) modes in any desired routing state. We experimentally establish a chip-to-chip MDM communication system. The mode basis can be freely switched between four LP modes and four OAM modes. We also demonstrate the multimode optical communication capability at a data rate of 25 Gbit/s. The proposed scheme shows significant advantages in terms of universality, intelligence, programmability and resistance to mode crosstalk, environmental disturbances, and fabrication errors, demonstrating that the MZI-based reconfigurable mode processor chip has great potential in long-distance chip-to-chip multimode optical communication systems.
-
[1] Zhou H, et al. Dielectric metasurfaces enabled ultradensely integrated multidimensional optical system. Laser Photonics Rev. 2022. https://doi.org/10.1002/lpor.202100521. [2] Yang KY, et al. Nat Commun. 2022;13:7862. [3] Zhou HL, Fu DZ, Dong JJ, Zhang P, Chen DX, Cai XL, Li FL, Zhang XL. Light Sci Appl. 2017;6:e16251. [4] Richardson DJ, Fini JM, Nelson LE. Space-division multiplexing in optical fibres. Nat Photonics. 2013;7(5):354–62. https://doi.org/10.1038/nphoton.2013.94. [5] Liu J, et al. 1-Pbps orbital angular momentum fibre-optic transmission. Light Sci Appl. 2022;11(1):202. https://doi.org/10.1038/s41377-022-00889-3. [6] Baumann JM, et al. Silicon chip-to-chip mode-division multiplexing. In: 2018 Optical Fiber Communications Conference and Exposition (OFC), 11-15 March 2018; 2018. p. 1–3. [7] Doerr CR, Fontaine N, Hirano M, Sasaki T, Buhl L, Winzer P. Silicon photonic integrated circuit for coupling to a ring-core multimode fiber for space-division multiplexing. In: European Conference and Exposition on Optical Communications: Optical Society of America; 2011. p. Th. 13. A. 3. [8] Schulz SA, Machula T, Upham J, Karimi E. Boyd RW. In: Chang HTVKT, Watts M, editors. Advanced Photonics 2013. Puerto Rico: (Optica Publishing Group, Rio Grande; 2013. p. IT5A.2. [9] Ding YH, Ou HY, Xu J, Peucheret C. Silicon photonic integrated circuit mode multiplexer. IEEE Photon Technol Lett. 2013;25(7):648–51. https://doi.org/10.1109/Lpt.2013.2247394. [10] Koonen AMJ, Chen HS, van den Boom HPA, Raz O. IEEE Photonics Technol Lett. 2012;24:1961. [11] Liu J, et al. Light. Sci Appl. 2018;7:17148. [12] Xie Z, et al. Light. Sci Appl. 2018;7:18001. [13] Miller DAB. Analyzing and generating multimode optical fields using self-configuring networks. Optica. 2020;7(7). https://doi.org/10.1364/optica.391592. [14] Zhang D, Feng X, Huang Y. Encoding and decoding of orbital angular momentum for wireless optical interconnects on chip. Opt Express. 2012;20(24):26986–95. https://doi.org/10.1364/OE.20.026986. [15] Zhou H, et al. Photonic matrix multiplication lights up photonic accelerator and beyond. Light Sci Appl. 2022;11(1):30. https://doi.org/10.1038/s41377-022-00717-8. [16] Zhou HL, Zhao YH, Wang X, Gao DS, Dong JJ, Zhang XL. Self-Configuring and reconfigurable silicon photonic signal processor. ACS Photonics. 2020;7(3):792–9. https://doi.org/10.1021/acsphotonics.9b01673. [17] Zhou HL, et al. Chip-scale optical matrix computation for PageRank Algorithm. IEEE J Sel Top Quantum Electron. 2020;26(2):1–10. https://doi.org/10.1109/Jstqe.2019.2943347. [18] Zhou HL, Zhao YH, Wei YX, Li F, Dong JJ, Zhang XL. All-in-one silicon photonic polarization processor. Nanophotonics. 2019;8(12):2257–67. https://doi.org/10.1515/nanoph-2019-0310. [19] Shen Y, et al. Deep learning with coherent nanophotonic circuits. Nat Photonics. 2017;11(7):441–6. https://doi.org/10.1038/nphoton.2017.93. [20] Xu X, et al. Self-calibrating programmable photonic integrated circuits. Nat Photonics. 2022. https://doi.org/10.1038/s41566-022-01020-z. [21] Milanizadeh M, et al. Separating arbitrary free-space beams with an integrated photonic processor. Light Sci Appl. 2022;11(1):197. https://doi.org/10.1038/s41377-022-00884-8. [22] Annoni A, Guglielmi E, Carminati M, Ferrari G, Sampietro M, Miller DA, Melloni A, Morichetti F. Light Sci Appl. 2017;6:e17110. [23] Zhang W, et al. On-chip photonic spatial-temporal descrambler. Chip. 2023;2(2). https://doi.org/10.1016/j.chip.2023.100043. [24] Clements WR, Humphreys PC, Metcalf BJ, Kolthammer WS, Walmsley IA. Optimal design for universal multiport interferometers. Optica. 2016;3(12):1460–5. https://doi.org/10.1364/Optica.3.001460. [25] Shao R, Zhang G, Gong X. Generalized robust training scheme using genetic algorithm for optical neural networks with imprecise components. Photonics Res. 2022;10(8):1868–76. https://doi.org/10.1364/Prj.449570. [26] Cong G, et al. On-chip bacterial foraging training in silicon photonic circuits for projection-enabled nonlinear classification. Nat Commun. 2022;13(1):3261. https://doi.org/10.1038/s41467-022-30906-3. [27] Pai S, et al. Experimentally realized in situ backpropagation for deep learning in photonic neural networks. Science. 2023;380(6643):398–404. https://doi.org/10.1126/science.ade8450. [28] Kingma DP, Ba J. Adam: a method for Stochastic optimization. p. arXiv:1412.6980. https://doi.org/10.48550/arXiv.1412.6980. [29] Hu G, Zhong K, Qin Y, Tsang HK. Silicon photonic integrated circuit for high-resolution multimode fiber imaging system. APL Photonics. 2023;8(4). https://doi.org/10.1063/5.0137688. [30] Fatemi R, Khachaturian A, Hajimiri A. IEEE J Solid-State Circuits. 2019;54:1200. [31] Wang X, et al. Polarization-independent fiber-chip grating couplers optimized by the adaptive genetic algorithm. Opt Lett. 2021;46(2):314–7. https://doi.org/10.1364/OL.413307. [32] Xie C, Zou X, Zou F, Yan L, Pan W, Zhang Y. A 32-channel 100 GHz wavelength division multiplexer by interleaving two silicon arrayed waveguide gratings*. Chin Phys B. 2021;30(12):120703. https://doi.org/10.1088/1674-1056/ac2d23. [33] Zhou J, Wang J, Zhang Q. Silicon Photonics for 100Gbaud. In: Optical Fiber Communication Conference (OFC) 2020. San Diego: Optica Publishing Group, in OSA Technical Digest; 2020. p. T3H.4. https://doi.org/10.1364/OFC.2020.T3H.4. Available: https://opg.optica.org/abstract.cfm?URI=OFC-2020-T3H.4. [34] Zhou J, Wang J. Zhang Q. In: Optical Fiber Communication Conference (OFC) 2020. San Diego, California: (Optica Publishing Group; 2020. p. T3H.4. -