留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Chip-to-chip optical multimode communication with universal mode processors

Chip-to-chip optical multimode communication with universal mode processors[J]. PhotoniX. doi: 10.1186/s43074-023-00114-3
引用本文: Chip-to-chip optical multimode communication with universal mode processors[J]. PhotoniX. doi: 10.1186/s43074-023-00114-3
Bo Wu, Wenkai Zhang, Hailong Zhou, Jianji Dong, Dongmei Huang, P. K. A. Wai, Xinliang Zhang. Chip-to-chip optical multimode communication with universal mode processors[J]. PhotoniX. doi: 10.1186/s43074-023-00114-3
Citation: Bo Wu, Wenkai Zhang, Hailong Zhou, Jianji Dong, Dongmei Huang, P. K. A. Wai, Xinliang Zhang. Chip-to-chip optical multimode communication with universal mode processors[J]. PhotoniX. doi: 10.1186/s43074-023-00114-3

Chip-to-chip optical multimode communication with universal mode processors

doi: 10.1186/s43074-023-00114-3

Chip-to-chip optical multimode communication with universal mode processors

Funds: National Natural Science Foundation of China (62275088, 62075075, U21A20511); Innovation Project of Optics Valley Laboratory (Grant No. OVL2021BG001); Research Grants Council, University Grants Committee of Hong Kong SAR under Grant PolyU15301022; Knowledge Innovation Program of Wuhan -Basic Research 2023010201010049.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • [1] Zhou H, et al. Dielectric metasurfaces enabled ultradensely integrated multidimensional optical system. Laser Photonics Rev. 2022. https://doi.org/10.1002/lpor.202100521.
    [2] Yang KY, et al. Nat Commun. 2022;13:7862.
    [3] Zhou HL, Fu DZ, Dong JJ, Zhang P, Chen DX, Cai XL, Li FL, Zhang XL. Light Sci Appl. 2017;6:e16251.
    [4] Richardson DJ, Fini JM, Nelson LE. Space-division multiplexing in optical fibres. Nat Photonics. 2013;7(5):354–62. https://doi.org/10.1038/nphoton.2013.94.
    [5] Liu J, et al. 1-Pbps orbital angular momentum fibre-optic transmission. Light Sci Appl. 2022;11(1):202. https://doi.org/10.1038/s41377-022-00889-3.
    [6] Baumann JM, et al. Silicon chip-to-chip mode-division multiplexing. In: 2018 Optical Fiber Communications Conference and Exposition (OFC), 11-15 March 2018; 2018. p. 1–3.
    [7] Doerr CR, Fontaine N, Hirano M, Sasaki T, Buhl L, Winzer P. Silicon photonic integrated circuit for coupling to a ring-core multimode fiber for space-division multiplexing. In: European Conference and Exposition on Optical Communications: Optical Society of America; 2011. p. Th. 13. A. 3.
    [8] Schulz SA, Machula T, Upham J, Karimi E. Boyd RW. In: Chang HTVKT, Watts M, editors. Advanced Photonics 2013. Puerto Rico: (Optica Publishing Group, Rio Grande; 2013. p. IT5A.2.
    [9] Ding YH, Ou HY, Xu J, Peucheret C. Silicon photonic integrated circuit mode multiplexer. IEEE Photon Technol Lett. 2013;25(7):648–51. https://doi.org/10.1109/Lpt.2013.2247394.
    [10] Koonen AMJ, Chen HS, van den Boom HPA, Raz O. IEEE Photonics Technol Lett. 2012;24:1961.
    [11] Liu J, et al. Light. Sci Appl. 2018;7:17148.
    [12] Xie Z, et al. Light. Sci Appl. 2018;7:18001.
    [13] Miller DAB. Analyzing and generating multimode optical fields using self-configuring networks. Optica. 2020;7(7). https://doi.org/10.1364/optica.391592.
    [14] Zhang D, Feng X, Huang Y. Encoding and decoding of orbital angular momentum for wireless optical interconnects on chip. Opt Express. 2012;20(24):26986–95. https://doi.org/10.1364/OE.20.026986.
    [15] Zhou H, et al. Photonic matrix multiplication lights up photonic accelerator and beyond. Light Sci Appl. 2022;11(1):30. https://doi.org/10.1038/s41377-022-00717-8.
    [16] Zhou HL, Zhao YH, Wang X, Gao DS, Dong JJ, Zhang XL. Self-Configuring and reconfigurable silicon photonic signal processor. ACS Photonics. 2020;7(3):792–9. https://doi.org/10.1021/acsphotonics.9b01673.
    [17] Zhou HL, et al. Chip-scale optical matrix computation for PageRank Algorithm. IEEE J Sel Top Quantum Electron. 2020;26(2):1–10. https://doi.org/10.1109/Jstqe.2019.2943347.
    [18] Zhou HL, Zhao YH, Wei YX, Li F, Dong JJ, Zhang XL. All-in-one silicon photonic polarization processor. Nanophotonics. 2019;8(12):2257–67. https://doi.org/10.1515/nanoph-2019-0310.
    [19] Shen Y, et al. Deep learning with coherent nanophotonic circuits. Nat Photonics. 2017;11(7):441–6. https://doi.org/10.1038/nphoton.2017.93.
    [20] Xu X, et al. Self-calibrating programmable photonic integrated circuits. Nat Photonics. 2022. https://doi.org/10.1038/s41566-022-01020-z.
    [21] Milanizadeh M, et al. Separating arbitrary free-space beams with an integrated photonic processor. Light Sci Appl. 2022;11(1):197. https://doi.org/10.1038/s41377-022-00884-8.
    [22] Annoni A, Guglielmi E, Carminati M, Ferrari G, Sampietro M, Miller DA, Melloni A, Morichetti F. Light Sci Appl. 2017;6:e17110.
    [23] Zhang W, et al. On-chip photonic spatial-temporal descrambler. Chip. 2023;2(2). https://doi.org/10.1016/j.chip.2023.100043.
    [24] Clements WR, Humphreys PC, Metcalf BJ, Kolthammer WS, Walmsley IA. Optimal design for universal multiport interferometers. Optica. 2016;3(12):1460–5. https://doi.org/10.1364/Optica.3.001460.
    [25] Shao R, Zhang G, Gong X. Generalized robust training scheme using genetic algorithm for optical neural networks with imprecise components. Photonics Res. 2022;10(8):1868–76. https://doi.org/10.1364/Prj.449570.
    [26] Cong G, et al. On-chip bacterial foraging training in silicon photonic circuits for projection-enabled nonlinear classification. Nat Commun. 2022;13(1):3261. https://doi.org/10.1038/s41467-022-30906-3.
    [27] Pai S, et al. Experimentally realized in situ backpropagation for deep learning in photonic neural networks. Science. 2023;380(6643):398–404. https://doi.org/10.1126/science.ade8450.
    [28] Kingma DP, Ba J. Adam: a method for Stochastic optimization. p. arXiv:1412.6980. https://doi.org/10.48550/arXiv.1412.6980.
    [29] Hu G, Zhong K, Qin Y, Tsang HK. Silicon photonic integrated circuit for high-resolution multimode fiber imaging system. APL Photonics. 2023;8(4). https://doi.org/10.1063/5.0137688.
    [30] Fatemi R, Khachaturian A, Hajimiri A. IEEE J Solid-State Circuits. 2019;54:1200.
    [31] Wang X, et al. Polarization-independent fiber-chip grating couplers optimized by the adaptive genetic algorithm. Opt Lett. 2021;46(2):314–7. https://doi.org/10.1364/OL.413307.
    [32] Xie C, Zou X, Zou F, Yan L, Pan W, Zhang Y. A 32-channel 100 GHz wavelength division multiplexer by interleaving two silicon arrayed waveguide gratings*. Chin Phys B. 2021;30(12):120703. https://doi.org/10.1088/1674-1056/ac2d23.
    [33] Zhou J, Wang J, Zhang Q. Silicon Photonics for 100Gbaud. In: Optical Fiber Communication Conference (OFC) 2020. San Diego: Optica Publishing Group, in OSA Technical Digest; 2020. p. T3H.4. https://doi.org/10.1364/OFC.2020.T3H.4. Available: https://opg.optica.org/abstract.cfm?URI=OFC-2020-T3H.4.
    [34] Zhou J, Wang J. Zhang Q. In: Optical Fiber Communication Conference (OFC) 2020. San Diego, California: (Optica Publishing Group; 2020. p. T3H.4.
  • 加载中
图(1)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  3
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-07
  • 录用日期:  2023-10-07
  • 修回日期:  2023-09-28
  • 网络出版日期:  2023-10-27

目录

    /

    返回文章
    返回