留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Deep tissue super-resolution imaging with adaptive optical two-photon multifocal structured illumination microscopy

Deep tissue super-resolution imaging with adaptive optical two-photon multifocal structured illumination microscopy[J]. PhotoniX. doi: 10.1186/s43074-023-00115-2
引用本文: Deep tissue super-resolution imaging with adaptive optical two-photon multifocal structured illumination microscopy[J]. PhotoniX. doi: 10.1186/s43074-023-00115-2
Chenshuang Zhang, Bin Yu, Fangrui Lin, Soham Samanta, Huanhuan Yu, Wei Zhang, Yingying Jing, Chunfeng Shang, Danying Lin, Ke Si, Wei Gong, Junle Qu. Deep tissue super-resolution imaging with adaptive optical two-photon multifocal structured illumination microscopy[J]. PhotoniX. doi: 10.1186/s43074-023-00115-2
Citation: Chenshuang Zhang, Bin Yu, Fangrui Lin, Soham Samanta, Huanhuan Yu, Wei Zhang, Yingying Jing, Chunfeng Shang, Danying Lin, Ke Si, Wei Gong, Junle Qu. Deep tissue super-resolution imaging with adaptive optical two-photon multifocal structured illumination microscopy[J]. PhotoniX. doi: 10.1186/s43074-023-00115-2

Deep tissue super-resolution imaging with adaptive optical two-photon multifocal structured illumination microscopy

doi: 10.1186/s43074-023-00115-2

Deep tissue super-resolution imaging with adaptive optical two-photon multifocal structured illumination microscopy

Funds: This work has been partially supported by the National Key R&D Program of China (2021YFF0502900), National Natural Science Foundation of China (61975131, 62175166, and 62127819), Shenzhen Key Laboratory of Photonics and Biophotonics (ZDSYS20210623092006020) and Shenzhen Science and Technology Program (JCYJ20220818100202005, JCYJ20200109105411133).
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • [1] Al-Hasani R, Gowrishankar R, Schmitz GP, Pedersen CE, Marcus DJ, Shirley SE, et al. Ventral tegmental area GABAergic inhibition of cholinergic interneurons in the ventral nucleus accumbens shell promotes reward reinforcement. Nat Neurosci. 2021;24(10):1414–28.
    [2] Yuste R, Denk W. Dendritic spines as basic functional units of neuronal integration. Nature. 1995;375(6355):682–4.
    [3] Nimchinsky EA, Sabatini BL, Svoboda K. Structure and function of dendritic spines. Annu Rev Physiol. 2002;64:313–53.
    [4] Ji N, Shroff H, Zhong H, Betzig E. Advances in the speed and resolution of light microscopy. Curr Opin Neurobiol. 2008;18(6):605–16.
    [5] Turcotte R, Liang Y, Tanimoto M, Zhang Q, Li Z, Koyama M, et al. Dynamic super-resolution structured illumination imaging in the living brain. Proc Natl Acad Sci U S A. 2019;116(19):9586–91.
    [6] Gribble KD, Walker LJ, Saint-Amant L, Kuwada JY, Granato M. The synaptic receptor Lrp4 promotes peripheral nerve regeneration. Nat Commun. 2018;9(1):2389.
    [7] Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science. 1990;248(4951):73–6.
    [8] Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat Methods. 2005;2(12):932–40.
    [9] Ingaramo M, York AG, Wawrzusin P, Milberg O, Hong A, Weigert R, et al. Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue. Proc Natl Acad Sci U S A. 2014;111(14):5254–9.
    [10] Winter PW, York AG, Nogare DD, Ingaramo M, Christensen R, Chitnis A, et al. Two-photon instant structured illumination microscopy improves the depth penetration of super-resolution imaging in thick scattering samples. Optica. 2014;1(3):181–91.
    [11] Zheng W, Wu Y, Winter P, Fischer R, Nogare DD, Hong A, et al. Adaptive optics improves multiphoton super-resolution imaging. Nat Methods. 2017;14(9):869–72.
    [12] Muller CB, Enderlein J. Image scanning microscopy. Phys Rev Lett. 2010;104(19): 198101.
    [13] Sheppard CJ, Mehta SB, Heintzmann R. Superresolution by image scanning microscopy using pixel reassignment. Opt Lett. 2013;38(15):2889–92.
    [14] Ji N, Milkie DE, Betzig E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat Methods. 2010;7(2):141–7.
    [15] Sahu P, Mazumder N. Advances in adaptive optics-based two-photon fluorescence microscopy for brain imaging. Lasers Med Sci. 2020;35(2):317–28.
    [16] Ji N, Freeman J, Smith SL. Technologies for imaging neural activity in large volumes. Nat Neurosci. 2016;19(9):1154–64.
    [17] Booth M. Adaptive optical microscopy: the ongoing quest for a perfect image. Light Sci Appl. 2014;3(4):e165–165.
    [18] Zhou Z, Huang J, Li X, Gao X, Chen Z, Jiao Z, et al. Adaptive optical microscopy via virtual-imaging-assisted wavefront sensing for high-resolution tissue imaging. PhotoniX. 2022;3(1):1–20.
    [19] Shu Y, Sun J, Lyu J, Fan Y, Zhou N, Ye R, et al. Adaptive optical quantitative phase imaging based on annular illumination Fourier ptychographic microscopy. PhotoniX. 2022;3(1):24.
    [20] Wu J, Lu Z, Jiang D, Guo Y, Qiao H, Zhang Y, et al. Iterative tomography with digital adaptive optics permits hour-long intravital observation of 3D subcellular dynamics at millisecond scale. Cell. 2021;184(12):3318–32e17.
    [21] Tao X, Norton A, Kissel M, Azucena O, Kubby J. Adaptive optical two-photon microscopy using autofluorescent guide stars. Opt Lett. 2013;38(23):5075–8.
    [22] Wang K, Milkie DE, Saxena A, Engerer P, Misgeld T, Bronner ME, et al. Rapid adaptive optical recovery of optimal resolution over large volumes. Nat Methods. 2014;11(6):625–8.
    [23] Wang K, Sun W, Richie CT, Harvey BK, Betzig E, Ji N. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue. Nat Commun. 2015;6:7276.
    [24] Kashiwagi Y, Higashi T, Obashi K, Sato Y, Komiyama NH, Grant SGN, et al. Computational geometry analysis of dendritic spines by structured illumination microscopy. Nat Commun. 2019;10(1):1285.
    [25] Ke M-T, Nakai Y, Fujimoto S, Takayama R, Yoshida S, Kitajima Tomoya S, et al. Super-resolution Mapping of neuronal circuitry with an Index-Optimized Clearing Agent. Cell Rep. 2016;14(11):2718–32.
    [26] Balcioglu A, Gillani R, Doron M, Burnell K, Ku T, Erisir A, et al. Mapping thalamic innervation to individual L2/3 pyramidal neurons and modeling their ‘readout’ of visual input. Nat Neurosci. 2023;26(3):470–80.
    [27] Ruthazer ES, Li J, Cline HT. Stabilization of axon branch dynamics by synaptic maturation. J Neurosci. 2006;26(13):3594–603.
    [28] Niell CM, Meyer MP, Smith SJ. In vivo imaging of synapse formation on a growing dendritic arbor. Nat Neurosci. 2004;7(3):254–60.
    [29] Huang B, Li J, Yao B, Yang Z, Lam EY, Zhang J, et al. Enhancing image resolution of confocal fluorescence microscopy with deep learning. PhotoniX. 2023;4(1):1–22.
    [30] Liao J, Zhang C, Xu X, Zhou L, Yu B, Lin D, et al. Deep-MSIM: fast image reconstruction with deep learning in multifocal structured illumination microscopy. Adv Sci. 2023;10(27):2300947.
    [31] Kim D, Keesling A, Omran A, Levine H, Bernien H, Greiner M, et al. Large-scale uniform optical focus array generation with a phase spatial light modulator. Opt Lett. 2019;44(12):3178–81.
  • 加载中
图(1)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  2
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-27
  • 录用日期:  2023-11-27
  • 修回日期:  2023-11-08
  • 网络出版日期:  2023-12-21

目录

    /

    返回文章
    返回