留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Reconfigurable flexible metasurfaces: from fundamentals towards biomedical applications

Jiangtao Tian, Wenhan Cao. Reconfigurable flexible metasurfaces: from fundamentals towards biomedical applications[J]. PhotoniX. doi: 10.1186/s43074-023-00116-1
Citation: Jiangtao Tian, Wenhan Cao. Reconfigurable flexible metasurfaces: from fundamentals towards biomedical applications[J]. PhotoniX. doi: 10.1186/s43074-023-00116-1

doi: 10.1186/s43074-023-00116-1

Reconfigurable flexible metasurfaces: from fundamentals towards biomedical applications

Funds: The work is supported by the National Natural Science Foundation of China under grant numbers 62205204, 62375172, and ShanghaiTech University Startup Fund.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Veselago V. Experimental demonstration of negative index of refraction. Sov Phys Usp. 1968;10:509.
    [2] Pendry JB, Holden AJ, Robbins DJ, Stewart W. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microwave Theory Tech. 1999;47(11):2075–84.
    [3] Smith DR, Padilla WJ, Vier D, Nemat-Nasser SC, Schultz S. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett. 2000;84(18):4184.
    [4] Shelby RA, Smith DR, Schultz S. Experimental verification of a negative index of refraction. Science. 2001;292(5514):77–9.
    [5] Chen K, Feng Y, Yang Z, Cui L, Zhao J, Zhu B, Jiang T. Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering. Sci Rep. 2016;6(1):1–10.
    [6] Ee H-S, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett. 2016;16(4):2818–23.
    [7] Munk B, Luebbers R, Fulton R. Transmission through a two-layer array of loaded slots. IEEE Trans Antennas Propag. 1974;22(6):804–9.
    [8] Xie Y, Wang W, Chen H, Konneker A, Popa B-I, Cummer SA. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nat Commun. 2014;5(1):1–5.
    [9] Salary MM, Jafar-Zanjani S, Mosallaei H. Electrically tunable harmonics in time-modulated metasurfaces for wavefront engineering. New J Phys. 2018;20(12):123023.
    [10] Jin B, Zhang C, Engelbrecht S, Pimenov A, Wu J, Xu Q, et al. Low loss and magnetic field-tunable superconducting terahertz metamaterial. Opt Express. 2010;18(16):17504–9.
    [11] Cheng X, Huang R, Xu J, Xu X. Broadband terahertz near-perfect absorbers. ACS Appl Mater Interfaces. 2020;12(29):33352–60.
    [12] Chen S, Chen Z, Liu J, Cheng J, Zhou Y, Xiao L, Chen K. Ultra-narrow band mid-infrared perfect absorber based on hybrid dielectric metasurface. Nanomaterials. 2019;9(10): 1350.
    [13] Iwaszczuk K, Strikwerda AC, Fan K, Zhang X, Averitt RD, Jepsen PU. Flexible metamaterial absorbers for stealth applications at terahertz frequencies. Opt Express. 2012;20(1):635–43.
    [14] Huang C, Yang J, Wu X, Song J, Pu M, Wang C, Luo X. Reconfigurable metasurface cloak for dynamical electromagnetic illusions. ACS Photonics. 2017;5(5):1718–25.
    [15] Orazbayev B, Estakhri NM, Beruete M, Alù A. Terahertz carpet cloak based on a ring resonator metasurface. Phys Rev B. 2015;91(19):195444.
    [16] Rajput A, Srivastava KV. Design of a two-dimensional metamaterial cloak with minimum scattering using a quadratic transformation function. J Appl Phys. 2014;116(12):124501.
    [17] Zhou F, Bao Y, Cao W, Stuart CT, Gu J, Zhang W, Sun C. Hiding a realistic object using a broadband terahertz invisibility cloak. Sci Rep. 2011;1(1):1–5.
    [18] Ma HF, Cui TJ. Three-dimensional broadband ground-plane cloak made of metamaterials. Nat Commun. 2010;1(1):1–6.
    [19] Pendry JB. Negative refraction. Contemp Phys. 2004;45(3):191–202.
    [20] Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science. 2005;308(5721):534–7.
    [21] Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett. 2000;85(18): 3966.
    [22] Paniagua-Dominguez R, Yu YF, Khaidarov E, Choi S, Leong V, Bakker RM, et al. A metalens with a near-unity numerical aperture. Nano Lett. 2018;18(3):2124–32.
    [23] Dong T, Li S, Manjappa M, Yang P, Zhou J, Kong D, et al. Nonlinear THz-Nano metasurfaces. Adv Funct Mater. 2021;31(24):2100463.
    [24] Liu X, Li C, Wang Z, Li Y, Huang J, Yu H. Wide-range flexible capacitive pressure sensors based on origami structure. IEEE Sens J. 2021;21(8):9798–807.
    [25] Cheng R, Xu L, Yu X, Zou L, Shen Y, Deng X. High-sensitivity biosensor for identification of protein based on terahertz Fano resonance metasurfaces. Opt Commun. 2020;473: 125850.
    [26] Zhang C, Xue T, Zhang J, Liu L, Xie J, Wang G, et al. Terahertz toroidal metasurface biosensor for sensitive distinction of lung cancer cells. Nanophotonics. 2022;11(1):101–9.
    [27] Li F, Shen J, Guan C, Xie Y, Wang Z, Lin S, et al. Exploring near-field sensing efficiency of complementary plasmonic metasurfaces for immunodetection of tumor markers. Biosens Bioelectron. 2022;203: 114038.
    [28] Zhu J, Wang Z, Lin S, Jiang S, Liu X, Guo S. Low-cost flexible plasmonic nanobump metasurfaces for label-free sensing of serum tumor marker. Biosens Bioelectron. 2020;150: 111905.
    [29] Watts CM, Shrekenhamer D, Montoya J, Lipworth G, Hunt J, Sleasman T, et al. Terahertz compressive imaging with metamaterial spatial light modulators. Nat Photonics. 2014;8(8):605–9.
    [30] Alsaedi D, El Badawe M, Ramahi OM. A Metasurface for Biomedical Imaging Applications. Singapore: 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI). 2021, pp. 589–90. https://doi.org/10.1109/APS/URSI47566.2021.9704530.
    [31] Zhang S, Wong CL, Zeng S, Bi R, Tai K, Dholakia K, Olivo M. Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective. Nanophotonics. 2021;10(1):259–93.
    [32] Woodward RM, Wallace VP, Pye RJ, Cole BE, Arnone DD, Linfield EH, Pepper M. Terahertz pulse imaging of ex vivo basal cell carcinoma. J Invest Dermatology. 2003;120(1):72–8.
    [33] Hu J, Luo GQ, Hao ZC. A wideband quad-polarization reconfigurable metasurface antenna. IEEE Access. 2017;6:6130–7.
    [34] Khan MR, Zekios CL, Bhardwaj S, Georgakopoulos SV. Origami-enabled frequency reconfigurable dipole antenna. Atlanta: 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting; 2019, pp. 901–2. https://doi.org/10.1109/APUSNCURSINRSM.2019.8889002.
    [35] Russo NE, Zekios CL, Georgakopoulos SV, An HS, Mishra AK, Shepherd RF. Design and fabrication of an origami multimode ring antenna. Boulder: 2021 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM); 2021, pp. 246–7. https://doi.org/10.23919/USNC-URSINRSM51531.2021.9336435.
    [36] Yao S, Bonan Y, Shafiq Y, Georgakopoulos SV. Rigid origami based reconfigurable conical spiral antenna. Boston: 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. 2018, pp. 179–80. https://doi.org/10.1109/APUSNCURSINRSM.2018.8608655.
    [37] Huang C, Zhang C, Yang J, Sun B, Zhao B, Luo X. Reconfigurable metasurface for multifunctional control of electromagnetic waves. Adv Opt Mater. 2017;5(22):1700485.
    [38] Watts CM, Liu X, Padilla WJ. Metamaterial electromagnetic wave absorbers. Adv Mater. 2012;24(23):OP98–120.
    [39] Xiong R-h, Peng X-q, Li J-s. Graphene-metasurface for wide-incident-angle terahertz absorption. Front Inform Technol Electron Eng. 2021;22(3):334–40.
    [40] Tao H, Landy NI, Bingham CM, Zhang X, Averitt RD, Padilla WJ. A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt Express. 2008;16(10):7181–8.
    [41] Fan K, Strikwerda AC, Tao H, Zhang X, Averitt RD. Stand-up magnetic metamaterials at terahertz frequencies. Opt Express. 2011;19(13):12619–27.
    [42] Malek SC, Ee H-S, Agarwal R. Strain multiplexed metasurface holograms on a stretchable substrate. Nano Lett. 2017;17(6):3641–5.
    [43] Arezoomandan S, Gopalan P, Tian K, Chanana A, Nahata A, Tiwari A, Sensale-Rodriguez B. Tunable terahertz metamaterials employing layered 2-D materials beyond graphene. IEEE J Sel Top Quantum Electron. 2016;23(1):188–94.
    [44] Thareja V, Esfandyarpour M, Kik PG, Brongersma ML. Anisotropic metasurfaces as tunable SERS substrates for 2D materials. ACS Photonics. 2019;6(8):1996–2004.
    [45] Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, et al. Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol. 2011;6(10):630–4.
    [46] Cao Y, Gan S, Geng Z, Liu J, Yang Y, Bao Q, Chen H. Optically tuned terahertz modulator based on annealed multilayer MoS2. Sci Rep. 2016;6(1): 22899.
    [47] Wu G, Jiao X, Wang Y, Zhao Z, Wang Y, Liu J. Ultra-wideband tunable metamaterial perfect absorber based on vanadium dioxide. Opt Express. 2021;29(2):2703–11.
    [48] Wang S, Kang L, Werner DH. Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2). Sci Rep. 2017;7(1):1–8.
    [49] Xiao L, Ma H, Liu J, Zhao W, Jia Y, Zhao Q, et al. Fast adaptive thermal camouflage based on flexible VO2/graphene/CNT thin films. Nano Lett. 2015;15(12):8365–70.
    [50] Qi H, Tang B. An active tunable terahertz functional metamaterial based on hybrid-graphene vanadium dioxide. Phys Chem Chem Phys. 2023;25(11):7825–31.
    [51] He X, Cao W. Tunable terahertz hybrid metamaterials supported by 3D Dirac semimetals. Opt Mater Express. 2023;13(2):413–22.
    [52] Giorgianni F, Chiadroni E, Rovere A, Cestelli-Guidi M, Perucchi A, Bellaveglia M, et al. Strong nonlinear terahertz response induced by Dirac surface states in Bi2Se3 topological insulator. Nat Commun. 2016;7(1): 11421.
    [53] Wang J, Sui X, Duan W, Liu F, Huang B. Density-independent plasmons for terahertz-stable topological metamaterials. Proc Natl Acad Sci. 2021;118(19):e2023029118.
    [54] Wang G, Cao W, He X. 3D Dirac semimetal elliptical fiber supported THz tunable hybrid plasmonic waveguides. IEEE J Sel Top Quantum Electron. 2023;29(5: Terahertz Photonics):1–7.
    [55] Cheng Y, Cao W, Wang G, He X, Lin F, Liu F. 3D Dirac semimetal supported thermal tunable terahertz hybrid plasmonic waveguides. Opt Express. 2023;31(11):17201–14.
    [56] Chen S, Chen J, Zhang X, Li Z-Y, Li J. Kirigami/origami: unfolding the new regime of advanced 3D microfabrication/nanofabrication with folding. Light Sci Appl. 2020;9(1):1–19.
    [57] Kaddour AS, Velez CA, Georgakopoulos SV. A deployable and reconfigurable origami reflectarray based on the Miura-Ori pattern. Montreal: 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting. 2020, pp. 91–2. https://doi.org/10.1109/IEEECONF35879.2020.9329994.
    [58] Xu L, Shyu TC, Kotov NA. Origami and kirigami nanocomposites. ACS Nano. 2017;11(8):7587–99.
    [59] Zhai Z, Wu L, Jiang H. Mechanical metamaterials based on origami and kirigami. Appl Phys Rev. 2021;8(4):041319.
    [60] Wang C, Lv Z, Mohan MP, Cui Z, Liu Z, Jiang Y, et al. Pangolin-inspired stretchable, microwave‐invisible metascale. Adv Mater. 2021;33(41):2102131.
    [61] Tanoto H, Ding L, Teng J. Tunable terahertz metamaterials. Intern J Terahertz Sci Tech. 2013;6:1–25.
    [62] Han Z, Kohno K, Fujita H, Hirakawa K, Toshiyoshi H. Tunable terahertz filter and modulator based on electrostatic MEMS reconfigurable SRR array. IEEE J Sel Top Quantum Electron. 2014;21(4):114–22.
    [63] Manjappa M, Pitchappa P, Singh N, Wang N, Zheludev NI, Lee C, Singh R. Reconfigurable MEMS Fano metasurfaces with multiple-input-output states for logic operations at terahertz frequencies. Nat Commun. 2018;9(1):4056.
    [64] Kim DH, Lu N, Ma R, Kim YS, Kim RH, Wang S, et al. Epidermal electronics. Science. 2011;333(6044):838–43.
    [65] Huang L, Chen HT. A brief review on terahertz metamaterial perfect absorbers. Terahertz Sci Technol. 2013;6(1):26–39.
    [66] Costa F, Monorchio A, Manara G. Theory, design and perspectives of electromagnetic wave absorbers. IEEE Electromagn Compat Magazine. 2016;5(2):67–74.
    [67] Zahra S, Ma L, Wang W, Li J, Chen D, Liu Y, et al. Electromagnetic metasurfaces and reconfigurable metasurfaces: a review. Front Phys. 2021;8: 593411.
    [68] Wang L, Zhang Y, Guo X, Chen T, Liang H, Hao X, et al. A review of THz modulators with dynamic tunable metasurfaces. Nanomaterials. 2019;9(7): 965.
    [69] Sun S, He Q, Hao J, Xiao S, Zhou L. Electromagnetic metasurfaces: physics and applications. Adv Opt Photonics. 2019;11(2):380–479.
    [70] Qiu C-W, Zhang T, Hu G, Kivshar Y. Quo vadis, metasurfaces? Nano Letters. 2021;21(13):5461–74.
    [71] Xiao S, Wang T, Liu T, Zhou C, Jiang X, Zhang J. Active metamaterials and metadevices: a review. J Phys D. 2020;53(50):503002.
    [72] Jiang S, Liu X, Liu J, Ye D, Duan Y, Li K, et al. Flexible metamaterial electronics. Adv Mater. 2022;34:2200070.
    [73] Hsu WL, Chen YC, Yeh SP, Zeng QC, Huang YW, Wang CM. Review of metasurfaces and metadevices: advantages of different materials and fabrications. Nanomaterials. 2022;12(12):1973.
    [74] He Q, Sun S, Zhou L. Tunable/reconfigurable metasurfaces: physics and applications. Research. 2019;2019:1849272. https://doi.org/10.34133/2019/1849272.
    [75] Hu J, Bandyopadhyay S, Liu YH, Shao LY. A review on metasurface: from principle to smart metadevices. Front Phys. 2021;8:586087.
    [76] Hsiao HH, Chu CH, Tsai DP. Fundamentals and applications of metasurfaces. Small Methods. 2017;1(4):1600064.
    [77] Guanxing Z, Liu Z, Deng W, Zhu W. Reconfigurable metasurfaces with mechanical actuations: towards flexible and tunable photonic devices. J Opt. 2020;23(1):013001.
    [78] Xu C, Ren Z, Wei J, Lee C. Reconfigurable terahertz metamaterials: from fundamental principles to advanced 6G applications. Iscience. 2022:;25: 103799.
    [79] Nemati A, Wang Q, Hong M, Teng J. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electronic Adv. 2018;1(5):180009.
    [80] Hashemi MR, Cakmakyapan S, Jarrahi M. Reconfigurable metamaterials for terahertz wave manipulation. Rep Prog Phys. 2017;80(9):094501.
    [81] Walia S, Shah CM, Gutruf P, Nili H, Chowdhury DR, Withayachumnankul W, et al. Flexible metasurfaces and metamaterials: a review of materials and fabrication processes at micro-and nano-scales. Appl Phys Rev. 2015;2(1):011303.
    [82] Monacelli B, Pryor JB, Munk BA, Kotter D, Boreman GD. Infrared frequency selective surface based on circuit-analog square loop design. IEEE Trans Antennas Propag. 2005;53(2):745–52.
    [83] Pitilakis A, Tsilipakos O, Liu F, Kossifos KM, Tasolamprou AC, Kwon DH, et al. A multi-functional reconfigurable metasurface: electromagnetic design accounting for fabrication aspects. IEEE Trans Antennas Propag. 2020;69(3):1440–54.
    [84] Zhou Y, Cao X, Gao J, Yang H, Li S. Reconfigurable metasurface for multiple functions: magnitude, polarization and phase modulation. Opt Express. 2018;26(22):29451–9.
    [85] Tao H, Strikwerda AC, Fan K, Padilla WJ, Zhang X, Averitt RD. MEMS based structurally tunable metamaterials at terahertz frequencies. J Infrared Millim Terahertz Waves. 2011;32(5):580–95.
    [86] Arbabi E, Arbabi A, Kamali SM, Horie Y, Faraji-Dana M, Faraon A. MEMS-tunable dielectric metasurface lens. Nat Commun. 2018;9(1):1–9.
    [87] Xu R-J, Lin Y-S. Actively MEMS-based tunable metamaterials for advanced and emerging applications. Electronics. 2022;11(2): 243.
    [88] Khorasaninejad M, Chen W, Zhu A, Oh J, Devlin R, Rousso D, Capasso F. Multispectral chiral imaging with a metalens. Nano Lett. 2016;16(7):4595–600.
    [89] Wang B, Zhou J, Koschny T, Kafesaki M, Soukoulis CM. Chiral metamaterials: simulations and experiments. J Opt A: Pure Appl Opt. 2009;11(11): 114003.
    [90] Zhang S, Park Y-S, Li J, Lu X, Zhang W, Zhang X. Negative refractive index in chiral metamaterials. Phys Rev Lett. 2009;102(2): 023901.
    [91] Wu Z, Zeng B, Zhong S. A double-layer chiral metamaterial with negative index. J Electromagn Waves Appl. 2010;24(7):983–92.
    [92] Nishijima Y, Balčytis A, Naganuma S, Seniutinas G, Juodkazis S. Kirchhoff’s metasurfaces towards efficient photo-thermal energy conversion. Sci Rep. 2019;9(1):1–9.
    [93] Liu J, Zeng H, Cheng M, Wang Z, Wang J, Cen M, et al. Photoelastic plasmonic metasurfaces with ultra-large near infrared spectral tuning. Mater Horiz. 2022;9(3):942–51.
    [94] Niu D, Jiang W, Li D, Ye G, Luo F, Liu H. Reconfigurable shape-morphing flexible surfaces realized by individually addressable photoactuator arrays. Smart Mater Struct. 2021;30(12):125032.
    [95] Liberal I, Li Y, Engheta N. Reconfigurable epsilon-near-zero metasurfaces via photonic doping. Nanophotonics. 2018;7(6):1117–27.
    [96] Ma F, Lin YS, Zhang X, Lee C. Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array. Light Sci Appl. 2014;3(5):e171-e.
    [97] Valente J, Ou J-Y, Plum E, Youngs IJ, Zheludev NI. Reconfiguring photonic metamaterials with currents and magnetic fields. Appl Phys Lett. 2015;106(11):111905.
    [98] Qin J, Deng L, Kang T, Nie L, Feng H, Wang H, et al. Switching the optical chirality in magnetoplasmonic metasurfaces using applied magnetic fields. ACS Nano. 2020;14(3):2808–16.
    [99] Chen L, Ruan Y, Luo SS, Ye FJ, Cui HY. Optically transparent Metasurface Absorber based on reconfigurable and flexible Indium Tin Oxide Film. Micromachines. 2020;11(12): 1032.
    [100] Fan X, Li Y, Chen S, Xing Y, Pan T. Mechanical terahertz modulation by skin-like ultrathin stretchable metasurface. Small. 2020;16(37):2002484.
    [101] Jang K-I, Chung HU, Xu S, Lee CH, Luan H, Jeong J, et al. Soft network composite materials with deterministic and bio-inspired designs. Nat Commun. 2015;6(1):6566.
    [102] Zeng S, Sreekanth KV, Shang J, Yu T, Chen CK, Yin F, et al. Graphene–gold metasurface architectures for ultrasensitive plasmonic biosensing. Adv Mater. 2015;27(40):6163–9.
    [103] Gollub J, Yurduseven O, Trofatter KP, Arnitz D, Imani F, Sleasman M. Large metasurface aperture for millimeter wave computational imaging at the human-scale. Sci Rep. 2017;7(1):1–9.
    [104] Zhen Z, Qian C, Jia Y, Fan Z, Hao R, Cai T, et al. Realizing transmitted metasurface cloak by a tandem neural network. Photon Res. 2021;9(5):B229–35.
    [105] Jiang S, Liu J, Xiong W, Yang Z, Yin L, Li K, Huang Y. A snakeskin-inspired, soft‐hinge kirigami metamaterial for self‐adaptive conformal electronic armor. Adv Mater. 2022;34(31):2204091.
    [106] Wang Z, Jing L, Yao K, Yang Y, Zheng B, Soukoulis CM, et al. Origami-based reconfigurable metamaterials for tunable chirality. Adv Mater. 2017;29(27): 1700412.
    [107] Jing L, Wang Z, Zheng B, Wang H, Yang Y, Shen L, et al. Kirigami metamaterials for reconfigurable toroidal circular dichroism. NPG Asia Mater. 2018;10(9):888–98.
    [108] Xu Z, Lin YS. A stretchable terahertz parabolic-shaped metamaterial. Adv Opt Mater. 2019;7(19):1900379.
    [109] Güell-Grau P, Pi F, Villa R, Nogues J, Alvarez M, Sepulveda B. Ultrabroadband light absorbing Fe/polymer flexible metamaterial for soft opto-mechanical devices. Appl Mater Today. 2021;23: 101052.
    [110] Choi C, Mun SE, Sung J, Choi K, Lee SY, Lee B. Hybrid state engineering of phase-change metasurface for all‐optical cryptography. Adv Funct Mater. 2021;31(4): 2007210.
    [111] Guo J, Wang T, Zhao H, Wang X, Feng S, Han P, et al. Reconfigurable terahertz metasurface pure phase holograms. Adv Opt Mater. 2019;7(10): 1801696.
    [112] Kim I, Kim W-S, Kim K, Ansari MA, Mehmood MQ, Badloe T, et al. Holographic metasurface gas sensors for instantaneous visual alarms. Sci Adv. 2021;7(15):eabe9943.
    [113] Zhu Y, Birla M, Oldham KR, Filipov ET. Elastically and plastically foldable electrothermal micro-origami for controllable and rapid shape morphing. Adv Funct Mater. 2020;30(40):2003741.
    [114] Ho CP, Pitchappa P, Lin Y-S, Huang C-Y, Kropelnicki P, Lee C. Electrothermally actuated microelectromechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics. Appl Phys Lett. 2014;104(16):161104.
    [115] Bosch M, Shcherbakov MR, Won K, Lee H-S, Kim Y, Shvets G. Electrically actuated varifocal lens based on liquid-crystal-embedded dielectric metasurfaces. Nano Lett. 2021;21(9):3849–56.
    [116] Li J, Yu P, Zhang S, Liu N. Electrically-controlled digital metasurface device for light projection displays. Nat Commun. 2020;11(1):1–7.
    [117] Kwon H, Faraon A. NEMS-tunable dielectric chiral metasurfaces. ACS Photonics. 2021;8(10):2980–6.
    [118] Montgomery SM, Wu S, Kuang X, Armstrong CD, Zemelka C, Ze Q, et al. Magneto-mechanical metamaterials with widely tunable mechanical properties and acoustic bandgaps. Adv Funct Mater. 2021;31(3):2005319.
    [119] Chen Y, Liang Q, Ji C-Y, Liu X, Wang R, Li J. A magnetic actuation scheme for nano-kirigami metasurfaces with reconfigurable circular dichroism. J Appl Phys. 2022;131(23):233102.
    [120] Jackson JA, Messner MC, Dudukovic NA, Smith WL, Bekker L, Moran B, et al. Field responsive mechanical metamaterials. Sci Adv. 2018;4(12): eaau6419.
    [121] Musorin A, Barsukova M, Shorokhov A, Luk’yanchuk B, Fedyanin A. Manipulating the light intensity by magnetophotonic metasurfaces. J Magn Magn Mater. 2018;459:165–70.
    [122] Park J-S, Zhang S, She A, Chen WT, Lin P, Yousef KM, et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Lett. 2019;19(12):8673–82.
    [123] Verre R, Odebo Länk N, Andrén D, Šípová H, Käll M. Large-scale fabrication of shaped high index dielectric nanoparticles on a substrate and in solution. Adv Opt Mater. 2018;6(7): 1701253.
    [124] Choi J, Cho W, Jung YS, Kang HS, Kim H-T. Direct fabrication of micro/nano-patterned surfaces by vertical-directional photofluidization of azobenzene materials. ACS Nano. 2017;11(2):1320–7.
    [125] Cardoso G, Hamouda F, Dagens B. Improved PDMS mold fabrication by direct etch with nanosphere self-assembly mask for soft UV-NIL subwavelength metasurfaces fabrication. Microelectron Eng. 2022;258: 111755.
    [126] Huo F, Zheng Z, Zheng G, Giam LR, Zhang H, Mirkin CA. Polymer pen lithography. Science. 2008;321(5896):1658–60.
    [127] Piner RD, Zhu J, Xu F, Hong S, Mirkin CA. Dip-pen nanolithography. Science. 1999;283(5402):661–3.
    [128] Carlotti M, Mattoli V. Functional materials for two-photon polymerization in microfabrication. Small. 2019;15(40): 1902687.
    [129] Bunea A-I, del Castillo Iniesta N, Droumpali A, Wetzel AE, Engay E, Taboryski R, editors. Micro 3D printing by two-photon polymerization: configurations and parameters for the nanoscribe system. Micro: MDPI; 2021.
    [130] Wu K, Zhao X, Bifano TG, Anderson SW, Zhang X. Auxetics-inspired tunable metamaterials for magnetic resonance imaging. Adv Mater. 2022;34(6): 2109032.
    [131] Iwanaga M. High-sensitivity high-throughput detection of nucleic acid targets on metasurface fluorescence biosensors. Biosensors. 2021;11(2): 33.
    [132] Wang Y, Ali MA, Chow EK, Dong L, Lu M. An optofluidic Metasurface for lateral flow-through detection of breast cancer biomarker. Biosens Bioelectron. 2018;107:224–9.
    [133] Patel SK, Surve J, Parmar J. Detection of cancer with graphene metasurface-based highly efficient sensors. Diam Relat Mater. 2022:;129: 109367.
    [134] Krishnan SR, Ray TR, Ayer AB, Ma Y, Gutruf P, Lee K, et al. Epidermal electronics for noninvasive, wireless, quantitative assessment of ventricular shunt function in patients with hydrocephalus. Sci Transl Med. 2018;10(465): eaat8437.
    [135] Krishnan SR, Su CJ, Xie Z, Patel M, Madhvapathy SR, Xu Y, et al. Wireless, battery-free epidermal electronics for continuous, quantitative, multimodal thermal characterization of skin. Small. 2018;14(47): 1803192.
    [136] Pitchappa P, Ho CP, Dhakar L, Qian Y, Singh N, Lee C. Periodic array of subwavelength MEMS cantilevers for dynamic manipulation of terahertz waves. J Microelectromech Syst. 2015;24(3):525–7.
    [137] Han Z, Kohno K, Fujita H, Hirakawa K, Toshiyoshi H. MEMS reconfigurable metamaterial for terahertz switchable filter and modulator. Opt Express. 2014;22(18):21326–39.
    [138] Alves F, Grbovic D, Karunasiri G. MEMS THz sensors using metasurface structures. Proc. SPIE 10531, Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XI, 1053111. 2018. https://doi.org/10.1117/12.2291756.
    [139] Pitchappa P, Kumar A, Singh R, Lee C, Wang N. Terahertz MEMS metadevices. J Micromech Microeng. 2021;31(11):113001.
    [140] Liu M, Susli M, Silva D, Putrino G, Kala H, Fan S, et al. Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial. Microsyst Nanoeng. 2017;3(1):1–6.
    [141] Qian Z, Kang S, Rajaram V, Rinaldi M. Narrowband MEMS resonant infrared detectors based on ultrathin perfect plasmonic absorbers. Orlando: 2016 IEEE SENSORS. 2016, pp. 1–3. https://doi.org/10.1109/ICSENS.2016.7808614.
    [142] Tao H, Strikwerda A, Fan K, Padilla W, Zhang X, Averitt R. Reconfigurable terahertz metamaterials. Phys Rev Lett. 2009;103(14):147401.
    [143] Pitchappa P, Pei Ho C, Lin Y-S, Kropelnicki P, Huang C-Y, Singh N, Lee C. Micro-electro-mechanically tunable metamaterial with enhanced electro-optic performance. Appl Phys Lett. 2014;104(15):151104.
    [144] Pitchappa P, Manjappa M, Krishnamoorthy HN, Chang Y, Lee C, Singh R. Bidirectional reconfiguration and thermal tuning of microcantilever metamaterial device operating from 77 K to 400 K. Appl Phys Lett. 2017;111(26):261101.
    [145] Hathcock M, Popa B-I, Wang K. Origami inspired phononic structure with metamaterial inclusions for tunable angular wave steering. J Appl Phys. 2021;129(14):145103.
    [146] Sun Y, et al. Geometric design classification of kirigami-inspired metastructures and metamaterials. Structures. 2021;33:3633–43.
    [147] Saito K, Pellegrino S, Nojima T. Manufacture of arbitrary cross-section composite honeycomb cores based on origami techniques. J Mech Des. 2014;136(5):051011.
    [148] Zheng R, Pan R, Sun C, Du S, Jin A, Li C, et al. Bidirectional origami inspiring versatile 3D metasurface. Adv Mater Technol. 2022;7:2200373.
    [149] Miura K. Method of packaging and deployment of large membranes in space. Inst Space Astronaut Sci Rep. 1985;618:1–9.
    [150] Nishiyama Y. Miura folding: applying origami to space exploration. Int J pure Appl Math. 2012;79(2):269–79.
    [151] Zhang J, Liu S, Zhang L, Wang C. Origami-based metasurfaces: design and radar cross section reduction. AIAA J. 2020;58(12):5478–82.
    [152] Gu J, Singh R, Liu X, Zhang X, Ma Y, Zhang S, et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat Commun. 2012;3(1):1–6.
    [153] Shcherbakov MR, Liu S, Zubyuk VV, Vaskin A, Vabishchevich PP, Keeler G, et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces. Nat Commun. 2017;8(1):1–6.
    [154] Wang W, Liu Q, Tanasijevic I, Reynolds MF, Cortese AJ, Miskin MZ, et al. Cilia metasurfaces for electronically programmable microfluidic manipulation. Nature. 2022;605(7911):681–6.
    [155] Zhao X, Schalch J, Zhang J, Seren HR, Duan G, Averitt RD, Zhang X. Electromechanically tunable metasurface transmission waveplate at terahertz frequencies. Optica. 2018;5(3):303–10.
    [156] Che Y, Wang X, Song Q, Zhu Y, Xiao S. Tunable optical metasurfaces enabled by multiple modulation mechanisms. Nanophotonics. 2020;9(15):4407–31.
    [157] Li Y, van de Groep J, Talin AA, Brongersma ML. Dynamic tuning of gap plasmon resonances using a solid-state electrochromic device. Nano Lett. 2019;19(11):7988–95.
    [158] Vassos E, Churm J, Feresidis A. Ultra-low-loss tunable piezoelectric-actuated metasurfaces achieving 360° or 180° dynamic phase shift at millimeter-waves. Sci Rep. 2020;10(1):1–10.
    [159] Jiao F, Li F, Shen J, Guan C, Khan SA, Wang J, et al. Wafer-scale flexible plasmonic metasurface with passivated aluminum nanopillars for high-sensitivity immunosensors. Sens Actuators B. 2021;344: 130170.
    [160] Chou SY, Krauss PR, Renstrom PJ. Nanoimprint lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer structures Processing. Meas Phenom. 1996;14(6):4129–33.
    [161] Baracu AM, Avram MA, Breazu C, Bunea M-C, Socol M, Stanculescu A, et al. Silicon metalens fabrication from electron beam to UV-nanoimprint lithography. Nanomaterials. 2021;11(9): 2329.
    [162] Oh DK, Lee T, Ko B, Badloe T, Ok JG, Rho J. Nanoimprint lithography for high-throughput fabrication of metasurfaces. Front Optoelectron. 2021;14(2):229–51.
    [163] Perret C, Gourgon C, Lazzarino F, Tallal J, Landis S, Pelzer R. Characterization of 8-in. Wafers printed by nanoimprint lithography. Microelectron Eng. 2004;73:172–7.
    [164] Jiang W, Liu H, Ding Y, Shi Y, Yin L, Lu B. Investigation of pattern coating on mould roller in roller-reversal imprint process. Microelectron Eng. 2009;86(12):2412–6.
    [165] Ahn SH, Guo LJ. High-speed roll‐to‐roll nanoimprint lithography on flexible plastic substrates. Adv Mater. 2008;20(11):2044–9.
    [166] Cates N, Einck VJ, Micklow L, Morère J, Okoroanyanwu U, Watkins JJ, Furst S. Roll-to-roll nanoimprint lithography using a seamless cylindrical mold nanopatterned with a high-speed mastering process. Nanotechnology. 2021;32(15):155301.
    [167] Tahir U, Kamran MA, Jeong MY. Numerical study on the optimization of roll-to-roll ultraviolet imprint lithography. Coatings. 2019;9(9): 573.
    [168] Xiang HY, Li YQ, Meng SS, Lee CS, Chen LS, Tang JX. Extremely efficient transparent flexible Organic Light-Emitting diodes with Nanostructured Composite electrodes. Adv Opt Mater. 2018;6(21): 1800831.
    [169] Schumm B, Wisser FM, Mondin G, Hippauf F, Fritsch J, Grothe J, Kaskel S. Semi-transparent silver electrodes for flexible electronic devices prepared by nanoimprint lithography. J Mater Chem C. 2013;1(4):638–45.
    [170] Liu Z, Zhou Z, Liu K, Xiao T, Tao TH, Jiang J. Large Scale Manufacturing of Hybrid Terahertz Metamaterial Surfaces Via Wafer-Level Water Lithography. Berlin: 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII). 2019, pp. 1553–5. https://doi.org/10.1109/TRANSDUCERS.2019.8808329.
    [171] Ok JG, Park HJ, Kwak MK, Pina-Hernandez CA, Ahn SH, Guo LJ. Continuous patterning of nanogratings by nanochannel‐guided lithography on liquid resists. Adv Mater. 2011;23(38):4444–8.
    [172] Kashiwagi K, Xie L, Li X, Kageyama T, Miura M, Miyashita H, et al. Flexible and stackable terahertz metamaterials via silver-nanoparticle inkjet printing. AIP Adv. 2018;8(4):045104.
    [173] Li S, Shen Z, Yin W, Zhang L, Chen X. 3D printed cross-shaped terahertz metamaterials with single-band, multi-band and broadband absorption. Opt Mater. 2021;122: 111739.
    [174] Ahn BY, Shoji D, Hansen CJ, Hong E, Dunand DC, Lewis JA. Printed origami structures. Adv Mater. 2010;22(20):2251–4.
    [175] Geng Q, Wang D, Chen P, Chen S-C. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat Commun. 2019;10(1):1–7.
    [176] Gonzalez-Ovejero D, Chahat N, Sauleau R, Chattopadhyay G, Maci S, Ettorre M. Additive manufactured metal-only modulated metasurface antennas. IEEE Trans Antennas Propag. 2018;66(11):6106–14.
    [177] Qin D, Xia Y, Whitesides GM. Soft lithography for micro-and nanoscale patterning. Nat Protoc. 2010;5(3):491.
    [178] Wang S, Nie Y, Zhu H, Xu Y, Cao S, Zhang J, et al. Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs. Sci Adv. 2022;8(13): eabl5511.
    [179] Zhang G, Lan C, Bian H, Gao R, Zhou J. Flexible, all-dielectric metasurface fabricated via nanosphere lithography and its applications in sensing. Opt Express. 2017;25(18):22038–45.
    [180] Escorcia I, Grant J, Gough J, Cumming DR. Uncooled CMOS terahertz imager using a metamaterial absorber and pn diode. Opt Lett. 2016;41(14):3261–4.
    [181] Zhou Z, Zhou T, Zhang S, Shi Z, Chen Y, Wan W, et al. Multicolor T-ray imaging using multispectral metamaterials. Adv Sci. 2018;5(7): 1700982.
    [182] Zhang X, Zhou Y, Zheng H, Linares AE, Ugwu FC, Li D, et al. Reconfigurable metasurface for image processing. Nano Lett. 2021;21(20):8715–22.
    [183] Tao H, et al. Fully implantable and resorbable metamaterials. San Jose: 2012 Conference on Lasers and Electro Optics (CLEO). 2012, pp. 1–2. https://doi.org/10.1364/CLEO_AT.2012.JTu1M.7.
    [184] Li L, Ruan H, Liu C, Li Y, Shuang Y, Alù A, et al. Machine-learning reprogrammable metasurface imager. Nat Commun. 2019;10(1):1–8.
    [185] Padilla WJ, Averitt RD. Imaging with metamaterials. Nat Reviews Phys. 2022;4(2):85–100.
    [186] Schneider B, Dickinson E, Vach M, Hoijer J, Howard L. Highly sensitive optical chip immunoassays in human serum. Biosens Bioelectron. 2000;15(1–2):13–22.
    [187] Arenkov P, Kukhtin A, Gemmell A, Voloshchuk S, Chupeeva V, Mirzabekov A. Protein microchips: use for immunoassay and enzymatic reactions. Anal Biochem. 2000;278(2):123–31.
    [188] Amin M, Siddiqui O, Abutarboush H, Farhat M, Ramzan R. A THz graphene metasurface for polarization selective virus sensing. Carbon. 2021;176:580–91.
    [189] Iwanaga M. All-dielectric metasurface fluorescence biosensors for high-sensitivity antibody/antigen detection. ACS Nano. 2020;14(12):17458–67.
    [190] Yu Z, Tang Y, Cai G, Ren R, Tang D. Paper electrode-based flexible pressure sensor for point-of-care immunoassay with digital multimeter. Anal Chem. 2018;91(2):1222–6.
    [191] La Spada L. Metasurfaces for advanced sensing and diagnostics. Sensors. 2019;19(2): 355.
    [192] La Spada L, Bilotti F, Vegni L. Metamaterial biosensor for cancer detection. Limerick: SENSORS, 2011 IEEE; 2011, pp. 627–30. https://doi.org/10.1109/ICSENS.2011.6127103.
    [193] Zhou J, Tao F, Zhu J, Lin S, Wang Z, Wang X, et al. Portable Tumor biosensing of serum by plasmonic biochips in combination with nanoimprint and microfluidics. Nanophotonics. 2019;8(2):307–16.
    [194] Rakhshani MR. Wide-angle perfect absorber using a 3D nanorod metasurface as a plasmonic sensor for detecting cancerous cells and its tuning with a graphene layer. Photonics Nanostructures-Fundam Appl. 2021;43:100883.
    [195] Kim J-H, Kim S-R, Kil H-J, Kim Y-C, Park J-W. Highly conformable, transparent electrodes for epidermal electronics. Nano Lett. 2018;18(7):4531–40.
    [196] Wang S, Li M, Wu J, Kim D, Lu N, Su Y, Kang Z, Huang Y, Rogers JA. Mechanics of epidermal electronics. J Appl Mech. 2012;79(3):031022.
    [197] Yeo WH, Kim YS, Lee J, Ameen A, Shi L, Li M, et al. Multifunctional epidermal electronics printed directly onto the skin. Adv Mater. 2013;25(20):2773–8.
    [198] Zhang Y, Tao TH. Skin-friendly electronics for acquiring human physiological signatures. Adv Mater. 2019;31(49): 1905767.
  • 加载中
图(1)
计量
  • 文章访问数:  77
  • HTML全文浏览量:  2
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-22
  • 录用日期:  2023-12-18
  • 修回日期:  2023-11-30
  • 网络出版日期:  2024-01-22

目录

    /

    返回文章
    返回