留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Observation of single-molecule Raman spectroscopy enabled by synergic electromagnetic and chemical enhancement

Observation of single-molecule Raman spectroscopy enabled by synergic electromagnetic and chemical enhancement[J]. PhotoniX. doi: 10.1186/s43074-024-00119-6
引用本文: Observation of single-molecule Raman spectroscopy enabled by synergic electromagnetic and chemical enhancement[J]. PhotoniX. doi: 10.1186/s43074-024-00119-6
Haiyao Yang, Haoran Mo, Jianzhi Zhang, Lihong Hong, Zhi-Yuan Li. Observation of single-molecule Raman spectroscopy enabled by synergic electromagnetic and chemical enhancement[J]. PhotoniX. doi: 10.1186/s43074-024-00119-6
Citation: Haiyao Yang, Haoran Mo, Jianzhi Zhang, Lihong Hong, Zhi-Yuan Li. Observation of single-molecule Raman spectroscopy enabled by synergic electromagnetic and chemical enhancement[J]. PhotoniX. doi: 10.1186/s43074-024-00119-6

Observation of single-molecule Raman spectroscopy enabled by synergic electromagnetic and chemical enhancement

doi: 10.1186/s43074-024-00119-6

Observation of single-molecule Raman spectroscopy enabled by synergic electromagnetic and chemical enhancement

Funds: This work is supported by the National Natural Science Foundation of China (11974119), Science and Technology Project of Guangdong (2020B010190001), Guangdong Innovative and Entrepreneurial Research Team Program (2016ZT06C594), and National Key R&D Program of China (2018YFA 0306200).
  • [1] Ferrari AC. Basko. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol. 2013;8:235.
    [2] Kneipp K, Kneipp H, Itzkan I, Dasari RR. Feld. Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev. 1999;99:2957.
    [3] Andrews DH. The relation between the raman spectra and the structure of organic molecules. Phys Rev. 1930;36: 544.
    [4] Ramaswamy C. Raman effect in diamond. Nature. 1930;125:704.
    [5] Kerker M, Wang DS, Chew H. Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles. Appl Opt. 1980;19: 3373.
    [6] Long L, Ju W, Yang HY, Li Z. Dimensional design for surface-enhanced raman spectroscopy. ACS Mater Au. 2022;2:552.
    [7] Li ZY. Mesoscopic and microscopic strategies for engineering plasmon-enhanced raman scattering. Adv Opt Mater. 2018;6(16):1701097.
    [8] Qiu Y, Kuang C, Liu X. Tang. Single-molecule surface-enhanced Raman Spectroscopy. Sens (Basel). 2022;22:4889.
    [9] Yu Y, Xiao TH, Wu YZ, et al. Roadmap for single-molecule surface-enhanced raman spectroscopy. Adv Photonics. 2020;2:014002.
    [10] de Virgilio M, Weninger H, Ivessa NE. Ubiquitination is required for the retro-translocation of a short-lived luminal endoplasmic reticulum glycoprotein to the cytosol for degradation by the proteasome. J Biol Chem. 1998;273:9734.
    [11] Kneipp K, Wang Y, Kneipp H, et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett. 1997;78:1667.
    [12] Nie S. Emory. Probing single molecules and single nanoparticles by Surface-Enhanced Raman Scattering. Science. 1997;275:1102.
    [13] Xu HX, Bjerneld EJ, Kall M, Borjesson L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett. 1999;83:4357.
    [14] Xia C, Zhang D, Li H, et al. Single-walled carbon nanotube based SERS substrate with single molecule sensitivity. Nano Res. 2021;15:694.
    [15] Shingaya Y, Takaki H, Kobayashi N, Aono M, Nakayama T. Single-molecule detection with enhanced Raman scattering of tungsten oxide nanostructure. Nanoscale. 2022;14:14552.
    [16] Jaculbia RB, Imada H, Miwa K, et al. Single-molecule resonance Raman effect in a plasmonic nanocavity. Nat Nanotechnol. 2020;15:105.
    [17] Zong C, Premasiri R, Lin H, et al. Plasmon-enhanced stimulated Raman scattering microscopy with single-molecule detection sensitivity. Nat Commun. 2019;10:5318.
    [18] Sugano K, Aiba K, Ikegami K, Isono Y. Single-molecule surface-enhanced Raman spectroscopy of 4,4 ‘-bipyridine on a prefabricated substrate with directionally arrayed gold nanoparticle dimers. Jpn J Appl Phys. 2017;56:06gk01.
    [19] Zheng Y, Soeriyadi AH, Rosa L, et al. Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection. Nat Commun. 2015;6:8797.
    [20] Darby BL, Etchegoin PG, Le Ru EC. Single-molecule surface-enhanced Raman spectroscopy with nanowatt excitation. Phys Chem Chem Phys. 2014;16:23895.
    [21] Li L, Hutter T, Steiner U, Mahajan S. Single molecule SERS and detection of biomolecules with a single gold nanoparticle on a mirror junction. Analyst. 2013;138:4574.
    [22] McGuinness CD, Macmillan AM, Karolin J, et al. Single molecule level detection of allophycocyanin by surface enhanced resonance Raman scattering. Analyst. 2007;132:633.
    [23] Zhou ZH, Wang GY, Xu ZZ. Single-molecule detection in a liquid by surface-enhanced resonance Raman scattering. Appl Phys Lett. 2006;88:034104.
    [24] Maher RC, Dalley M, Le Ru EC, et al. Physics of single molecule fluctuations in surface enhanced Raman spectroscopy active liquids. J Chem Phys. 2004;121:8901.
    [25] Lin CL, Liang SS, Peng YS, et al. Visualized SERS Imaging of single molecule by Ag/Black phosphorus nanosheets. Nano-Micro Lett. 2022;14:75.
    [26] Fan M, Andrade GFS, Brolo AG. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Anal Chim Acta. 2020;1097:1.
    [27] Langer J, Jimenez de Aberasturi D, Aizpurua J, et al. Present and Future of Surface-enhanced Raman Scattering. ACS Nano. 2020;14:28.
    [28] Zrimsek AB, Chiang N, Mattei M, et al. Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy. Chem Rev. 2017;117:7583.
    [29] Kleinman SL, Sharma B, Blaber MG, et al. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy. J Am Chem Soc. 2013;135:301.
    [30] Wang X, Huang SC, Hu S, Yan S, Ren B. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nat Reviews Phys. 2020;2:253.
    [31] Ling X, Fang W, Lee YH, et al. Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2. Nano Lett. 2014;14:3033.
    [32] Beams R, Gustavo Cancado L, Novotny L. Raman characterization of defects and dopants in graphene. J Phys Condens Matter. 2015;27: 083002.
    [33] Neumann C, Reichardt S, Venezuela P, et al. Raman spectroscopy as probe of nanometre-scale strain variations in graphene. Nat Commun. 2015;6:8429.
    [34] Li JF, Tian XD, Li SB, et al. Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy. Nat Protoc. 2013;8:52.
    [35] Wei RB, Kuang PY, Cheng H, et al. Plasmon-enhanced Photoelectrochemical Water Splitting on Gold Nanoparticle decorated ZnO/CdS nanotube arrays. ACS Sustain Chem Eng. 2017;5:4249.
    [36] Yin Z, Wang Y, Song C, et al. Hybrid Au-Ag nanostructures for enhanced Plasmon-Driven Catalytic Selective Hydrogenation through visible light irradiation and surface-enhanced Raman Scattering. J Am Chem Soc. 2018;140:864.
    [37] Pettinger B, Schambach P, Carlos J Villagómez, et al. Tip-Enhanced Raman Spectroscopy: Near-fields acting on a few molecules. Annu Rev Phys Chem. 2012;63(1):379–99.
    [38] Pienpinijtham P, Kitahama Y, Ozaki Y. Electric field analysis, polarization, excitation wavelength dependence, and novel applications of tip-enhanced Raman scattering. J Raman Spectrosc. 2021;52:1997.
    [39] Zhang KF, Taniguchi S, Saeki T, et al. Simple cleaning and regeneration of tip-enhanced Raman spectroscopy probe with UV sources. J Raman Spectrosc. 2022;53:2023.
    [40] Xiao TH, Cheng Z, Luo Z, et al. All-dielectric chiral-field-enhanced Raman optical activity. Nat Commun. 2021;12:3062.
    [41] Berkdemir A, Gutiérrez HR, Botello-Méndez AR, et al. Identification of individual and few layers of WS2 using Raman Spectroscopy. Sci Rep. 2013;3:1755.
    [42] Shi W, Lin ML, Tan QH, et al. Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2. 2d Materials. 2016;3:025016.
    [43] Zhang N, Tong LM, Zhang J. Graphene-based enhanced Raman scattering toward Analytical Applications. Chem Mater. 2016;28:6426.
    [44] Fukui K, Yonezawa T, Shingu H. A molecular Orbital theory of reactivity in aromatic hydrocarbons. J Chem Phys. 1952;20:722.
    [45] Yin Y, Miao P, Zhang Y, et al. Significantly increased Raman Enhancement on MoX2 (X = S, Se) Monolayers upon Phase Transition. Adv Funct Mater. 2017;27(16):1606694.
    [46] Xu H, Xie L, Zhang H, Zhang J. Effect of graphene Fermi level on the Raman scattering intensity of molecules on graphene. ACS Nano. 2011;5:5338.
    [47] Ming X. A Review on applications of two-dimensional materials in surface-enhanced Raman Spectroscopy. Int J Spectrosc. 2018;4861472:9.
    [48] Shutov AD, Yi Z, Wang J, et al. Giant Chemical Surface Enhancement of Coherent Raman scattering on MoS2. ACS Photonics. 2018;5:4960.
    [49] He R, Lai H, Wang S, et al. Few-layered vdW MoO3 for sensitive, uniform and stable SERS applications. Appl Surf Sci. 2020;507: 145116.
    [50] Wu Z, Zeng P, Zhao W, et al. Synthesis of single- and few-Layer Nitrogen-doped Graphene and Layer-Dependent Surface-enhanced Raman Scattering properties. J Phys Chem C. 2021;125:17831.
    [51] Wang Z, Rothberg LJ. Origins of blinking in single-molecule Raman spectroscopy. J Phys Chem B. 2005;109:3387.
    [52] Saini GS, Kaur S, Tripathi SK, et al. Spectroscopic studies of rhodamine 6G dispersed in polymethylcyanoacrylate. Spectrochim Acta Mol Biomol Spectrosc. 2005;61:653.
    [53] Wang HL, You EM, Panneerselvam R, Ding SY. Tian. Advances of surface-enhanced Raman and IR spectroscopies: from nano/microstructures to macro-optical design. Light Sci Appl. 2021;10:161.
    [54] Dong X, Yang B, Zhu R, et al. Tip-induced bond weakening, tilting, and hopping of a single CO molecule on Cu(100). Light Adv Manuf. 2022;3:729–38.
  • 加载中
图(1)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  0
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-02
  • 录用日期:  2024-02-20
  • 修回日期:  2023-12-08
  • 网络出版日期:  2024-02-29

目录

    /

    返回文章
    返回