High-dimensional Poincaré beams generated through cascaded metasurfaces for high-security optical encryption
-
Abstract:
Optical encryption plays an increasingly important role in the field of information security owing to its parallel processing capability and low power consumption. Employing the ultrathin metasurfaces in optical encryption has promoted the miniaturization and multifunctionality of encryption systems. Nevertheless, with the few number of degrees of freedom (DoFs) multiplexed by single metasurface, both key space and encoding space are limited. To address this issue, we propose a high-security and large-capacity optical encryption scheme based on perfect high-dimensional Poincaré beams with expanded DoFs. By cascading two arrayed metasurfaces, more beam properties can be independently engineered, which gives rise to the extensively expanded key and encoding spaces. Our work provides a promising strategy for optical encryption with high security level and large information capacity and might facilitate the applications of Poincaré beams in optical communications and quantum information.
-
Key words:
- Engineering" /
- " data-track="click" data-track-action="view keyword" data-track-label="link">Poincaré beams /
- Engineering" /
- " data-track="click" data-track-action="view keyword" data-track-label="link">Cascaded metasurfaces /
- Engineering" /
- " data-track="click" data-track-action="view keyword" data-track-label="link">Optical encryption
-
[1] Matoba O, Nomura T, Perez-Cabre E, Millan MS, Javidi B. Optical techniques for information security. Proc IEEE. 2009;97(6):1128–48. [2] Chen W, Javidi B, Chen X. Advances in optical security systems. Adv Opt Photonics. 2014;6(2):120–55. [3] Liu S, Guo C, Sheridan JT. A review of optical image encryption techniques. Opt Laser Technol. 2014;57:327–42. [4] Jiao S, Zhou C, Shi Y, Zou W, Li X. Review on optical image hiding and watermarking techniques. Opt Laser Technol. 2019;109:370–80. [5] Liu S, Liu X, Yuan J, Bao J. Multidimensional information encryption and storage: when the input is light. Res (Wash D C). 2021;2021:7897849. [6] Yu NF, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science. 2011;334(6054):333–7. [7] Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater. 2014;13(2):139–50. [8] Zhao R, Huang L, Wang Y. Recent advances in multi-dimensional metasurfaces holographic technologies. PhotoniX. 2020;1(1):20. [9] Deng Z-L, Wang Z-Q, Li F-J, Hu M-X, Li X. Multi-freedom metasurface empowered vectorial holography. Nanophotonics. 2022;11(9):1725–39. [10] Li T, Chen C, Xiao X, Chen J, Hu S, Zhu S. Revolutionary meta-imaging: from superlens to metalens. Photonics Insights. 2023;2(1):R01. [11] Yang H, Ou K, Wan H, Hu Y, Wei Z, Jia H, et al. Metasurface-empowered optical cryptography. Mater Today. 2023;67:424–45. [12] Jung C, Kim G, Jeong M, Jang J, Dong Z, Badloe T, et al. Metasurface-driven optically variable devices. Chem Rev. 2021;121(21):13013–50. [13] So S, Mun J, Park J, Rho J. Revisiting the design strategies for metasurfaces: fundamental physics, optimization, and beyond. Adv Mater. 2023;35(43):2206399. [14] Kamali SM, Arbabi E, Arbabi A, Horie Y, Faraji-Dana M, Faraon A. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles. Phys Rev X. 2017;7(4):041056. [15] Wan S, Wan C, Dai C, Li Z, Tang J, Zheng G, et al. Angular-multiplexing metasurface: building up independent-encoded amplitude/phase dictionary for angular illumination. Adv Opt Mater. 2021;9(22):2101547. [16] Wan S, Tang J, Wan C, Li Z, Li Z. Angular-encrypted quad-fold display of nanoprinting and meta-holography for optical information storage. Adv Opt Mater. 2022;10(11):2102820. [17] Lim KTP, Liu H, Liu Y, Yang JKW. Holographic colour prints for enhanced optical security by combined phase and amplitude control. Nat Commun. 2019;10(1):25. [18] Yue F, Zhang C, Zang XF, Wen D, Gerardot BD, Zhang S, et al. High-resolution grayscale image hidden in a laser beam. Light Sci Appl. 2018;7:17129. [19] Yang H, Jiang Y, Hu Y, Ou K, Duan H. Noninterleaved metasurface for full-polarization three-dimensional vectorial holography. Laser Photonics Rev. 2022;16(11):2200351. [20] Zhou H, Sain B, Wang Y, Schlickriede C, Zhao R, Zhang X, et al. Polarization-encrypted orbital angular momentum multiplexed metasurface holography. ACS Nano. 2020;14(5):5553–9. [21] Ren H, Fang X, Jang J, Burger J, Rho J, Maier SA. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat Nanotechnol. 2020;15(11):948–55. [22] Jin L, Huang Y-W, Jin Z, Devlin RC, Dong Z, Mei S, et al. Dielectric multi-momentum meta-transformer in the visible. Nat Commun. 2019;10(1):4789. [23] Ren H, Briere G, Fang X, Ni P, Sawant R, Héron S, et al. Metasurface orbital angular momentum holography. Nat Commun. 2019;10(1):2986. [24] Qu G, Yang W, Song Q, Liu Y, Qiu CW, Han J, et al. Reprogrammable meta-hologram for optical encryption. Nat Commun. 2020;11(1):5484. [25] Georgi P, Wei QS, Sain B, Schlickriede C, Wang YT, Huang LL, et al. Optical secret sharing with cascaded metasurface holography. Sci Adv. 2021;7(16):eabf9718. [26] Luo X, Hu Y, Li X, Jiang Y, Wang Y, Dai P, et al. Integrated metasurfaces with microprints and helicity-multiplexed holograms for real-time optical encryption. Adv Opt Mater. 2020;8(8):1902020. [27] Kim J, Jeon D, Seong J, Badloe T, Jeon N, Kim G, et al. Photonic encryption platform via dual-band vectorial metaholograms in the ultraviolet and visible. ACS Nano. 2022;16(3):3546–53. [28] Guo X, Zhong J, Li B, Qi S, Li Y, Li P, et al. Full-color holographic display and encryption with full-polarization degree of freedom. Adv Mater. 2022;34(3):e2103192. [29] Li J, Guan Z, Liu HC, He Z, Li Z, Yu S, et al. Metasurface-assisted indirect-observation cryptographic system. Laser Photonics Rev. 2022;17(1):2200342. [30] Yang H, He P, Ou K, Hu Y, Jiang Y, Ou X, et al. Angular momentum holography via a minimalist metasurface for optical nested encryption. Light Sci Appl. 2023;12(1):79. [31] Jin L, Dong Z, Mei S, Yu YF, Wei Z, Pan Z, et al. Noninterleaved Metasurface for (2(6)-1) Spin- and Wavelength-Encoded Holograms. Nano Lett. 2018;18(12):8016–24. [32] Bao Y, Yu Y, Xu H, Lin Q, Wang Y, Li J, et al. Coherent pixel design of metasurfaces for multidimensional optical control of multiple printing-image switching and encoding. Adv Funct Mater. 2018;28(51):1805306. [33] Zheng PX, Dai Q, Li ZL, Ye ZY, Xiong J, Liu HC, et al. Metasurface-based key for computational imaging encryption. Sci Adv. 2021;7(21):eabg0363. [34] Guo X, Li P, Zhong J, Wen D, Wei B, Liu S, et al. Stokes meta-hologram toward optical cryptography. Nat Commun. 2022;13(1):6687. [35] Kim I, Jang J, Kim G, Lee J, Badloe T, Mun J, et al. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform. Nat Commun. 2021;12(1):3614. [36] Xiong B, Xu Y, Wang J, Li L, Deng L, Cheng F, et al. Realizing colorful holographic mimicry by metasurfaces. Adv Mater. 2021;33(21):e2005864. [37] Hu Y, Ou X, Zeng T, Lai J, Zhang J, Li X, et al. Electrically tunable multifunctional polarization-dependent metasurfaces integrated with liquid crystals in the visible Region. Nano Lett. 2021;21(11):4554–62. [38] Gao H, Fan X, Xiong W, Hong M. Recent advances in optical dynamic meta-holography. Opto-Electronic Adv. 2021;4(11):210030. [39] Yi X, Liu Y, Ling X, Zhou X, Ke Y, Luo H, et al. Hybrid-order Poincaré sphere. Phys Rev A. 2015;91(2):023801. [40] Rosales-Guzmán C, Ndagano B, Forbes A. A review of complex vector light fields and their applications. J Opt. 2018;20(12):123001. [41] Bao Y, Ni J, Qiu CW. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams. Adv Mater. 2020;32(6):e1905659. [42] Jiang ZH, Kang L, Yue T, Xu HX, Yang Y, Jin Z, et al. A Single noninterleaved metasurface for high-capacity and flexible mode multiplexing of higher-order poincare sphere beams. Adv Mater. 2020;32(6):e1903983. [43] Chen Y, Xia KY, Shen WG, Gao J, Yan ZQ, Jiao ZQ, et al. Vector vortex beam emitter embedded in a photonic chip. Phys Rev Lett. 2020;124(15):153601. [44] Yang Y, Ren Y-X, Chen M, Arita Y, Rosales-Guzmán C. Optical trapping with structured light: a review. Adv Photonics. 2021;3(03):034001. [45] Liu M, Huo P, Zhu W, Zhang C, Zhang S, Song M, et al. Broadband generation of perfect Poincare beams via dielectric spin-multiplexed metasurface. Nat Commun. 2021;12(1):2230. [46] Dong Z, Chen Y, Wang F, Cai Y, Friberg AT, Setälä T. Encoding higher-order polarization states into robust partially coherent optical beams. Phy Rev Appl. 2022;18(3):034036. [47] Deng L, Jin R, Xu Y, Liu Y. Structured light generation using angle-multiplexed metasurfaces. Adv Opt Mater. 2023;11(16):2300299. [48] Li H, Zheng C, Liu J, Xu H, Song C, Yang F, et al. Binary encoding-inspired generation of vector vortex beams. Sci China Phys Mech Astron. 2023;66(5):254212. [49] Wang S, Wen S, Deng ZL, Li X, Yang Y. Metasurface-based solid poincare sphere polarizer. Phys Rev Lett. 2023;130(12):123801. [50] Jang J, Badloe T, Rho J. Unlocking the future of optical security with metasurfaces. Light Sci Appl. 2021;10(1):144. [51] Cai X, Tang R, Zhou H, Li Q, Ma S, Wang D, et al. Dynamically controlling terahertz wavefronts with cascaded metasurfaces. Adv Photonics. 2021;3(03):036003. [52] Mei F, Qu G, Sha X, Han J, Yu M, Li H, et al. Cascaded metasurfaces for high-purity vortex generation. Nat Commun. 2023;14(1):6410. [53] Chen C, Gao SL, Song WG, Li HM, Zhu SN, Li T. Metasurfaces with planar chiral meta-atoms for spin light manipulation. Nano Lett. 2021;21(4):1815–21. [54] Chen C, Ye X, Sun JC, Chen YX, Huang CY, Xiao XJ, et al. Bifacial-metasurface-enabled pancake metalens with polarized space folding. Optica. 2022;9(12):1314–22. -