[1] |
Mabuchi H, Doherty AC. Cavity quantum electrodynamics: Coherence in context. Science. 2002;298(5597):1372–7.
|
[2] |
Walls DF, Milburn GJ. Quantum Optics. Berlin: Springer-Verlag; 2008.
|
[3] |
Wallraff A, Schuster DI, Blais A, Frunzio L, Huang RS, Majer J, Kumar S, Girvin SM, Schoelkopf RJ. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature. 2004;431(7005):162–7.
|
[4] |
Bello F, Kongsuwan N, Donegan JF, Hess O. Controlled cavity-free, singlephoton emission and bipartite entanglement of near-field-excited quantum emitters. Nano Lett. 2020;20(8):5830–6.
|
[5] |
Volz T, Reinhard A, Winger M, Badolato A, Hennessy KJ, Hu EL, Imamoğlu A. Ultrafast all-optical switching by single photons. Nat Photonics. 2012;6(9):605–9.
|
[6] |
Kongsuwan N, Xiong X, Bai P, You JB, Png CE, Wu L, Hess O. Quantum plasmonic immunoassay sensing. Nano Lett. 2019;19(9):5853–61.
|
[7] |
Baranov DG, Wersäll M, Cuadra J, Antosiewicz TJ, Shegai T. Novel nanostructures and materials for strong lightmatter interactions. ACS Photonics. 2018;5(1):24–42.
|
[8] |
Baumberg JJ, Aizpurua J, Mikkelsen MH, Smith DR. Extreme nanophotonics from ultrathin metallic gaps. Nat Mater. 2019;18(7):668–78.
|
[9] |
Chikkaraddy R, De Nijs B, Benz F, Barrow SJ, Scherman OA, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg JJ. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature. 2016;535(7610):127–30.
|
[10] |
Santhosh K, Bitton O, Chuntonov L, Haran G. Vacuum rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat Commun. 2016;7(1):1–5.
|
[11] |
Groß H, Hamm J.M, Tufarelli T, Hess O, Hecht B. Near-field strong coupling of single quantum dots. Sci Adv. 2018;4(3):eaar4906.
|
[12] |
Park KD, May MA, Leng H, Wang J, Kropp JA, Gougousi T, Pelton M, Raschke MB. Tip-enhanced strong coupling spectroscopy, imaging, and control of a single quantum emitter. Sci Adv. 2019;5(7):eaav5931.
|
[13] |
Xiong X, Kongsuwan N, Lai Y, Png CE, Wu L, Hess O. Room-temperature plexcitonic strong coupling: Ultrafast dynamics for quantum applications. Appl Phys Lett. 2021;118(13): 130501.
|
[14] |
Xiong X, Lai Y, Clarke D, Kongsuwan N, Dong Z, Bai P, Png CE, Wu L, Hess O. Control of plexcitonic strong coupling via substrate-mediated hotspot nanoengineering. Advanced Optical Materials. 2022;10(17):2200557.
|
[15] |
Xiong X, Clarke D, Lai Y, Bai P, Png CE, Wu L, Hess O. Substrate engineering of plasmonic nanocavity antenna modes. Opt Express. 2023;31(2):2345–58.
|
[16] |
Bello FD, Kongsuwan N, Hess O. Near-field generation and control of ultrafast, multipartite entanglement for quantum nanoplasmonic networks. Nano Lett. 2022;22(7):2801–8.
|
[17] |
Horodecki R, Horodecki P, Horodecki M, Horodecki K. Quantum entanglement. Rev Mod Phys. 2009;81:865–942.
|
[18] |
Wu X, Jiang P, Razinskas G, Huo Y, Zhang H, Kamp M, Rastelli A, Schmidt OG, Hecht B, Lindfors K, Lippitz M. On-chip single-plasmon nanocircuit driven by a self-assembled quantum dot. Nano Lett. 2017;17(7):4291–6.
|
[19] |
Ochs M, Zurak L, Krauss E, Meier J, Emmerling M, Kullock R, Hecht B. Nanoscale electrical excitation of distinct modes in plasmonic waveguides. Nano Lett. 2021;21(10):4225–30.
|
[20] |
Dombi P, Pápa Z, Vogelsang J, Yalunin SV, Sivis M, Herink G, Schäfer S, Groß P, Ropers C, Lienau C. Strong-field nano-optics. Rev Mod Phys. 2020;92: 025003.
|