[1] |
Sancho-Durá J, Zinoviev K, Lloret-Soler J, Rubio-Guviernau JL, Margallo-Balbás E, Drexler W. Handheld multi-modal imaging for point-of-care skin diagnosis based on akinetic integrated optics optical coherence tomography. J Biophoton. 2018;11(10):e201800193. https://doi.org/10.1002/jbio.201800193.
|
[2] |
Xiang C, Jin W, Bowers JE. Silicon nitride passive and active photonic integrated circuits: trends and prospects. Photon Res. 2022;10(6):A82. https://doi.org/10.1364/prj.452936.
|
[3] |
Drexler W, Fujimoto JG. Optical Coherence Tomography. Switzerland: Springer International Publishing; 2015. https://doi.org/10.1007/978-3-319-06419-2.
|
[4] |
Sattler E, Kästle R, Welzel J. Optical coherence tomography in dermatology. J Biomed Opt. 2013;18(6):061224. https://doi.org/10.1117/1.jbo.18.6.061224.
|
[5] |
Welzel J, Noack J, Lankenau E, Engelhardt R. Optical Coherence Tomography in Dermatology. In: Handbook of Optical Coherence Tomography. Luebeck: CRC Press; 2001. pp. 539–61. https://doi.org/10.1201/b14024-21.
|
[6] |
Vakoc BJ, Fukumura D, Jain RK, Bouma BE. Cancer imaging by optical coherence tomography: preclinical progress and clinical potential. Nat Rev Cancer. 2012;12(5):363–8. https://doi.org/10.1038/nrc3235.
|
[7] |
Photiou C, Kassinopoulos M, Pitris C. Extracting Morphological and Sub-Resolution Features from Optical Coherence Tomography Images, a Review with Applications in Cancer Diagnosis. Photonics. 2023;10(1):51. https://doi.org/10.3390/photonics10010051.
|
[8] |
Tsai TH, Fujimoto J, Mashimo H. Endoscopic Optical Coherence Tomography for Clinical Gastroenterology. Diagnostics. 2014;4(2):57–93. https://doi.org/10.3390/diagnostics4020057.
|
[9] |
Agneter A, Rank EA, Schmoll T, Leitgeb RA, Drexler W. Miniaturizing optical coherence tomography. Transl Biophotonics. 2022;4(1-2). https://doi.org/10.1002/tbio.202100007.
|
[10] |
Song G, Jelly ET, Chu KK, Kendall WY, Wax A. A review of low-cost and portable optical coherence tomography. Prog Biomed Eng. 2021;3(3):032002. https://doi.org/10.1088/2516-1091/abfeb7.
|
[11] |
Yurtsever G, Považay B, Alex A, Zabihian B, Drexler W, Baets R. Photonic integrated Mach-Zehnder interferometer with an on-chip reference arm for optical coherence tomography. Biomed Optic Express. 2014;5(4):1050. https://doi.org/10.1364/boe.5.001050.
|
[12] |
Ji X, Yao X, Gan Y, Mohanty A, Tadayon MA, Hendon CP, et al. On-chip tunable photonic delay line. APL Photon. 2019;4(9):090803. https://doi.org/10.1063/1.5111164.
|
[13] |
Akca BI, Worhoff K, de Ridder RM, Nguyen VD, Kalkman J, Ismail N, et al. Toward Spectral-Domain Optical Coherence Tomography on a Chip. IEEE J Sel Top Quantum Electron. 2012;18(3):1223–33. https://doi.org/10.1109/jstqe.2011.2171674.
|
[14] |
Akca BI, Považay B, Alex A, Wörhoff K, de Ridder RM, Drexler W, et al. Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip. Opt Express. 2013;21(14):16648. https://doi.org/10.1364/oe.21.016648.
|
[15] |
Ruis RM, Leinse A, Dekker R, Heideman RG, van Leeuwen TG, Faber DJ. Decreasing the Size of a Spectral Domain Optical Coherence Tomography System With Cascaded Arrayed Waveguide Gratings in a Photonic Integrated Circuit. IEEE J Sel Top Quantum Electron. 2019;25(1):1–9. https://doi.org/10.1109/jstqe.2018.2874074.
|
[16] |
Smit MK. New focusing and dispersive planar component based on an optical phased array. Electron Lett. 1988;24(7):385. https://doi.org/10.1049/el:19880260.
|
[17] |
Takahashi H, Suzuki S, Kato K, Nishi I. Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution. Electron Lett. 1990;26(2):87. https://doi.org/10.1049/el:19900058.
|
[18] |
Smit MK, Dam CV. PHASAR-based WDM-devices: Principles, design and applications. IEEE J Sel Top Quantum Electron. 1996;2(2):236–50. https://doi.org/10.1109/2944.577370.
|
[19] |
Seyringer D. Arrayed Waveguide Gratings. Spotlight. SPIE; 2016. https://doi.org/10.1117/3.2242852.
|
[20] |
Seyringer D, Schmid P, Bielik M, Uherek F, Chovan J, Kuzma A. Design, simulation, evaluation, and technological verification of arrayed waveguide gratings. Opt Eng. 2014;53(7):071803. https://doi.org/10.1117/1.oe.53.7.071803.
|
[21] |
Seyringer D, Hodzic E. Calculation of accurate channel spacing of an AWG optical demultiplexer applying proportional method. In: Fédéli JM, editor. SPIE Proceedings. 9520, Integrated Photonics: Materials, Devices, and Applications III, 95200T. SPIE; 2015. https://doi.org/10.1117/12.2178271.
|
[22] |
Rank EA, Sentosa R, Harper DJ, Salas M, Gaugutz A, Seyringer D, et al. Toward optical coherence tomography on a chip: in vivo three-dimensional human retinal imaging using photonic integrated circuit-based arrayed waveguide gratings. Light Sci Appl. 2021;10(1). https://doi.org/10.1038/s41377-020-00450-0.
|
[23] |
Richter A, Polatynski A, Mingaleev S, Sokolov E, de Felipe D, Conradi H, et al. Virtual prototyping of complex photonic components and integrated circuits for polymer-based integration platform. In: Lee EH, He S, editors. Smart Photonic and Optoelectronic Integrated Circuits XX. San Francisco: SPIE; 2018. https://doi.org/10.1117/12.2290436.
|
[24] |
Nathan M. Microlens reflector for out-of-plane optical coupling of a waveguide to a buried silicon photodiode. Appl Phys Lett. 2004;85(14):2688–90. https://doi.org/10.1063/1.1803617.
|
[25] |
Masini G, Sahni S, Capellini G, Witzens J, Gunn C. High-Speed Near Infrared Optical Receivers Based on Ge Waveguide Photodetectors Integrated in a CMOS Process. Adv Opt Technol. 2008;2008:1–5. https://doi.org/10.1155/2008/196572.
|
[26] |
Byrd MJ, Timurdogan E, Su Z, Poulton CV, Fahrenkopf NM, Leake G, et al. Mode-evolution-based coupler for high saturation power Ge-on-Si photodetectors. Opt Lett. 2017;42(4):851. https://doi.org/10.1364/ol.42.000851.
|
[27] |
Bernard M, Gemma L, Brunelli D, Paternoster G, Ghulinyan M. Coupling of Photonic Waveguides to Integrated Detectors Using 3D Inverse Tapering. J Lightwave Technol. 2022;40(18):6201–6. https://doi.org/10.1109/jlt.2022.3190041.
|
[28] |
Wen P, Tiwari P, Mauthe S, Schmid H, Sousa M, Scherrer M, et al. Waveguide coupled III-V photodiodes monolithically integrated on Si. Nat Commun. 2022;13(1). https://doi.org/10.1038/s41467-022-28502-6.
|
[29] |
Xue Y, Han Y, Wang Y, Li J, Wang J, Zhang Z, et al. High-speed and low dark current silicon-waveguide-coupled III-V photodetectors selectively grown on SOI. Optica. 2022;9(11):1219. https://doi.org/10.1364/optica.468129.
|
[30] |
Roelkens G, Brouckaert J, Taillaert D, Dumon P, Bogaerts W, Thourhout DV, et al. Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits. Opt Express. 2005;13(25):10102. https://doi.org/10.1364/opex.13.010102.
|
[31] |
De Vita C, Toso F, Pruiti NG, Klitis C, Ferrari G, Sorel M, et al. Amorphous-silicon visible-light detector integrated on silicon nitride waveguides. Opt Lett. 2022;47(10):2598. https://doi.org/10.1364/ol.455458.
|
[32] |
D’Agostino D, Desbordes T, Broeke R, Boerkamp M, Mink J, Ambrosius HPMM, et al. A monolithically integrated AWG based wavelength interrogator with 180 nm working range and pm resolution. In: Advanced Photonics for Communications. IPRSN. OSA; 2014. https://doi.org/10.1364/iprsn.2014.im2a.4.
|
[33] |
Zhang Z, Wang Y, Wang J, Yi D, Chan DWU, Yuan W, et al. Integrated scanning spectrometer with a tunable micro-ring resonator and an arrayed waveguide grating. Photon Res. 2022;10(5):A74. https://doi.org/10.1364/prj.443039.
|
[34] |
Hainberger R, Müllner P. PHOTONISCHE INTEGRIERTE SCHALTUNG, AT Patent, EP4033282A1;WO2022161965A1. EP4033282A1;WO2022161965A1. 2022. https://patents.google.com/patent/EP4033282A1.
|
[35] |
Vlaskovic M, Zimmermann H, Meinhardt G, Kraft J, Sagmeister M, Schoegler J. PIN-photodiode based active pixel in 0.35 $ \upmu $m high-voltage CMOS for optical coherence tomography. In: 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). Croatia: IEEE; 2019. https://doi.org/10.23919/mipro.2019.8757194.
|
[36] |
Vlaskovic M, Zimmermann H, Meinhardt G, Kraft J. Image sensor for spectral-domain optical coherence tomography on a chip. Electron Lett. 2020;56(24):1306–9. https://doi.org/10.1049/el.2020.1898.
|
[37] |
Lichtenegger A, Baumann B, Yasuno Y. Optical Coherence Tomography Is a Promising Tool for Zebrafish-Based Research–A Review. Bioengineering. 2022;10(1):5. https://doi.org/10.3390/bioengineering10010005.
|
[38] |
Narumanchi S, Wang H, Perttunen S, Tikkanen I, Lakkisto P, Paavola J. Zebrafish Heart Failure Models. Front Cell Dev Biol. 2021;9. https://doi.org/10.3389/fcell.2021.662583.
|
[39] |
Astell KR, Sieger D. Zebrafish In Vivo Models of Cancer and Metastasis. Cold Spring Harb Perspect Med. 2019;10(8):a037077. https://doi.org/10.1101/cshperspect.a037077.
|
[40] |
Gamble JT, Elson DJ, Greenwood JA, Tanguay RL, Kolluri SK. The Zebrafish Xenograft Models for Investigating Cancer and Cancer Therapeutics. Biology. 2021;10(4):252. https://doi.org/10.3390/biology10040252.
|
[41] |
Schuermann A, Helker CSM, Herzog W. Angiogenesis in zebrafish. Semin Cell Dev Biol. 2014;31:106–14. https://doi.org/10.1016/j.semcdb.2014.04.037.
|
[42] |
Isogai S, Horiguchi M, Weinstein BM. The Vascular Anatomy of the Developing Zebrafish: An Atlas of Embryonic and Early Larval Development. Dev Biol. 2001;230(2):278–301. https://doi.org/10.1006/dbio.2000.9995.
|
[43] |
Hegasy D. Illustration. www.hegasy.de. Accessed 8 Mar 2023.
|
[44] |
Seyringer D, Müllner P, Eggeling M, Agneter A, Nguyen Q, Rank EA, et al. 512-channel SiN-based AWG-spectrometer for OCT on a chip. In: 2024 24th International Conference on Transparent Optical Networks (ICTON). vol. 123. Bari: IEEE; 2024. pp. 1–4. https://doi.org/10.1109/icton62926.2024.10647672.
|
[45] |
Leitgeb RA, Michaely R, Lasser T, Sekhar SC. Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning. Opt Lett. 2007;32(23):3453. https://doi.org/10.1364/ol.32.003453.
|
[46] |
Wojtkowski M, Kowalczyk A, Leitgeb R, Fercher AF. Full range complex spectral optical coherence tomography technique in eye imaging. Opt Lett. 2002;27(16):1415. https://doi.org/10.1364/ol.27.001415.
|
[47] |
Rarbi F, Dzahini D, Gallin-Martel L, Bouvier J. A low cross-talk 3-channel analog multiplexer with a 12-bit 25-MS/s pipelined ADC. In: 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC). Anaheim: IEEE; 2012. https://doi.org/10.1109/nssmic.2012.6551233.
|
[48] |
Yoon C, Bauer A, Xu D, Dorrer C, Rolland JP. Absolute linear-in-k spectrometer designs enabled by freeform optics. Opt Express. 2019;27(24):34593. https://doi.org/10.1364/oe.27.034593.
|
[49] |
Seyringer, D. Application of angular method to correct channel spacing between AWG demultiplexed channels. In Advanced Manufacturing, Electronics and Microsystems. TechConnect Briefs. TechConnect. 2016. pp. 267–71.
|
[50] |
Hodzic E, Seyringer D, Uherek F, Chovan J, Kuzma A. Calculation of accurate channel spacing of an arrayed waveguide grating optical multiplexer/demultiplexer applying position method. In: The Tenth International Conference on Advanced Semiconductor Devices and Microsystems. Smolenice: IEEE; 2014. https://doi.org/10.1109/asdam.2014.6998685.
|
[51] |
Seyringer D. Arrayed waveguide gratings for telecom and spectroscopic applications. In: Integrated Optics Volume 2: Characterization, devices and applications. [online]. Institution of Engineering and Technology; 2020. pp. 295–336. https://doi.org/10.1049/pbcs077g_ch10.
|
[52] |
PHASER tool from Optiwave. https://optiwave.com/resources/academia/wdm-phasar-download/. Accessed 2023.
|
[53] |
SolSTis Ti:Sapphire laser, M Square, 1 Kelvin Campus, West of Scotland Science Park, Glasgow, United Kingdom. https://m2lasers.com. Accessed Apr 2023.
|
[54] |
KLayout. https://www.klayout.de. Accessed 2023.
|
[55] |
Guizar-Sicairos M, Thurman ST, Fienup JR. Efficient subpixel image registration algorithms. Opt Lett. 2008;33(2):156. https://doi.org/10.1364/ol.33.000156.
|
[56] |
Mariampillai A, Standish BA, Moriyama EH, Khurana M, Munce NR, Leung MKK, et al. Speckle variance detection of microvasculature using swept-source optical coherence tomography. Opt Lett. 2008;33(13):1530. https://doi.org/10.1364/ol.33.001530.
|
[57] |
Zhang A, Zhang Q, Chen CL, Wang RK. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison. J Biomed Opt. 2015;20(10):100901. https://doi.org/10.1117/1.jbo.20.10.100901.
|
[58] |
Westerfield M. The Zebrafish Book; A guide for the laboratory use of zebrafish (Danio rerio). 4th Edition. Eugene. 2007;1:1–3.
|