留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cascaded compressed-sensing single-pixel camera for high-dimensional optical imaging

Jongchan Park, Liang Gao. Cascaded compressed-sensing single-pixel camera for high-dimensional optical imaging[J]. PhotoniX. doi: 10.1186/s43074-024-00152-5
Citation: Jongchan Park, Liang Gao. Cascaded compressed-sensing single-pixel camera for high-dimensional optical imaging[J]. PhotoniX. doi: 10.1186/s43074-024-00152-5

doi: 10.1186/s43074-024-00152-5

Cascaded compressed-sensing single-pixel camera for high-dimensional optical imaging

Funds: This work was supported partially by National Institutes of Health (R35GM128761).
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Edgar MP, Gibson GM, Padgett MJ. Principles and prospects for single-pixel imaging. Nat Photonics. 2019;13:13–20.
    [2] Gibson GM, Johnson SD, Padgett MJ. Single-pixel imaging 12 years on: a review. Opt Express. 2020;28:28190–208.
    [3] Wu G, et al. Light field image processing: an overview. IEEE J Sel Top Signal Process. 2017;11:926–54.
    [4] Savage N. Digital spatial light modulators. Nat Photonics. 2009;3:170–2.
    [5] Shapiro JH. Computational ghost imaging. Phys Rev A. 2008;78:061802.
    [6] Duarte MF, et al. Single-pixel imaging via compressive sampling. IEEE Signal Process Mag. 2008;25:83–91.
    [7] Chan WL, et al. A single-pixel terahertz imaging system based on compressed sensing. Appl Phys Lett. 2008;93:121105.
    [8] Studer V, et al. Compressive fluorescence microscopy for biological and hyperspectral imaging. Proc Natl Acad Sci. 2012;109:E1679–87.
    [9] Zhang Z, Ma X, Zhong J. Single-pixel imaging by means of Fourier spectrum acquisition. Nat Commun. 2015;6:1–6.
    [10] Edgar M, et al. Simultaneous real-time visible and infrared video with single-pixel detectors. Sci Rep. 2015;5:1–8.
    [11] Sun M-J, et al. Single-pixel three-dimensional imaging with time-based depth resolution. Nat Commun. 2016;7:1–6.
    [12] Yu H, et al. Fourier-transform ghost imaging with hard X rays. Phys Rev Lett. 2016;117:113901.
    [13] Stockton P, et al. Tomographic single pixel spatial frequency projection imaging. Opt Commun. 2022;520;021907.
    [14] Candes EJ, Tao T. Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans Inf Theory. 2006;52:5406–25.
    [15] Torabzadeh M, Park I-Y, Bartels RA, Durkin AJ, Tromberg BJ. Compressed single pixel imaging in the spatial frequency domain. J Biomed Opt. 2017;22:030501.
    [16] Horadam KJ. Hadamard matrices and their applications. Hadamard matrices and their applications. New Jersey: Princeton University Press; 2012.
    [17] Zhang Z, Wang X, Zheng G, Zhong J. Hadamard single-pixel imaging versus Fourier single-pixel imaging. Opt Express. 2017;25:19619–39.
    [18] Dudley D, Duncan WM, Slaughter J. Emerging digital micromirror device (DMD) applications. MOEMS Display Imaging Syst. 2003;4985:14–25 (International Society for Optics and Photonics).
    [19] Sun MJ, Meng LT, Edgar MP, Padgett MJ, Radwell N. A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging. Sci Rep. 2017;7:1–7.
    [20] López-García L, et al. Efficient ordering of the Hadamard basis for single pixel imaging. Opt Express. 2022;30:13714–32.
    [21] Duarte MF, Eldar YC. Structured compressed sensing: from theory to applications. IEEE Trans Signal Process. 2011;59:4053–85.
    [22] Dong W, Shi G, Li X, Ma Y, Huang F. Compressive sensing via nonlocal low-rank regularization. IEEE Trans Image Process. 2014;23:3618–32.
    [23] Yu X, Stantchev RI, Yang F, Pickwell-MacPherson E. Super sub-nyquist single-pixel imaging by total variation ascending ordering of the hadamard basis. Sci Rep. 2020;10:1–11.
    [24] Gao L, Smith RT. Optical hyperspectral imaging in microscopy and spectroscopy–a review of data acquisition. J Biophotonics. 2015;8:441–56.
    [25] Park J, Feng X, Liang R, Gao L. Snapshot multidimensional photography through active optical mapping. Nat Commun. 2020;11:1–13.
    [26] Liang J, Wang P, Zhu L, Wang LV. Single-shot stereo-polarimetric compressed ultrafast photography for light-speed observation of high-dimensional optical transients with picosecond resolution. Nat Commun. 2020;11:5252.
    [27] Zhao Z, et al. Redundant compressed single-pixel hyperspectral imaging system. Opt Commun. 2023;546:129797.
    [28] Jin S, et al. Hyperspectral imaging using the single-pixel fourier transform technique. Sci Rep. 2017;7:1–7.
    [29] Bian L, et al. Multispectral imaging using a single bucket detector. Sci Rep. 2016;6:1–7.
    [30] Sun B, et al. 3D computational imaging with single-pixel detectors. Science. 2013;340:844–7.
    [31] Helgason S, Helgason S. The radon transform, vol. 2. New York: Springer; 1980.
    [32] Feng X, Gao L. Ultrafast light field tomography for snapshot transient and non-line-of-sight imaging. Nat Commun. 2021;12:2179.
    [33] Ma Y, et al. Light-field tomographic fluorescence lifetime imaging microscopy. Proc Natl Acad Sci. 2024;121:e2402556121.
    [34] Li X, Luo S. A compressed sensing-based iterative algorithm for CT reconstruction and its possible application to phase contrast imaging. Biomed Eng OnLine. 2011;10:73.
    [35] Kudo H, Suzuki T, Rashed EA. Image reconstruction for sparse-view CT and interior CT—introduction to compressed sensing and differentiated backprojection. Quant Imaging Med Surg. 2013;3:147–61.
    [36] Candes E, Romberg J. Sparsity and incoherence in compressive sampling. Inverse Probl. 2007;23:969.
    [37] Xu J, Pi Y, Cao Z. Optimized projection matrix for compressive sensing. EURASIP J Adv Signal Process. 2010;2010:1–8.
    [38] Abo-Zahhad MM, Hussein AI, Mohamed AM. Compressive sensing algorithms for signal processing applications: a survey. Int J Commun Netw Syst Sci. 2015;8:197.
    [39] Arjoune Y, Kaabouch N, Ghazi E, Tamtaoui A. A performance comparison of measurement matrices in compressive sensing. Int J Commun Syst. 2018;31:e3576.
    [40] Nouasria H, Et-tolba M, Bedoui A. New sensing matrices based On orthogonal hadamard matrices for compressive sensing. in 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC). IEEE; 2019. p. 186–91.
    [41] Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci. 2009;2:183–202.
    [42] Higham CF, Murray-Smith R, Padgett MJ, Edgar MP. Deep learning for real-time single-pixel video. Sci Rep. 2018;8:1–9.
    [43] Li Z, et al. Efficient single-pixel multispectral imaging via non-mechanical spatio-spectral modulation. Sci Rep. 2017;7:41435.
    [44] Tzang O, et al. Wavefront shaping in complex media with a 350 kHz modulator via a 1D-to-2D transform. Nat Photonics. 2019;13:788–93.
    [45] Shaltout AM, Shalaev VM, Brongersma ML. Spatiotemporal light control with active metasurfaces. Science. 2019;364:eaat300.
    [46] Oliva E. Wedged double Wollaston, a device for single shot polarimetric measurements. Astron Astrophys Suppl Ser. 1997;123:589–92.
    [47] Luo Y, et al. Laser-induced fluorescence imaging of subsurface tissue structures with a volume holographic spatial-spectral imaging system. Opt Lett. 2008;33:2098–100.
  • 加载中
计量
  • 文章访问数:  63
  • HTML全文浏览量:  0
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-24
  • 录用日期:  2024-10-25
  • 修回日期:  2024-10-16
  • 网络出版日期:  2024-11-07

目录

    /

    返回文章
    返回