留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Isolating the classical and quantum coherence of a multiphoton system

Isolating the classical and quantum coherence of a multiphoton system[J]. PhotoniX. doi: 10.1186/s43074-024-00153-4
引用本文: Isolating the classical and quantum coherence of a multiphoton system[J]. PhotoniX. doi: 10.1186/s43074-024-00153-4
Chenglong You, Mingyuan Hong, Fatemeh Mostafavi, Jannatul Ferdous, Roberto de J. León-Montiel, Riley B. Dawkins, Omar S. Magaña-Loaiza. Isolating the classical and quantum coherence of a multiphoton system[J]. PhotoniX. doi: 10.1186/s43074-024-00153-4
Citation: Chenglong You, Mingyuan Hong, Fatemeh Mostafavi, Jannatul Ferdous, Roberto de J. León-Montiel, Riley B. Dawkins, Omar S. Magaña-Loaiza. Isolating the classical and quantum coherence of a multiphoton system[J]. PhotoniX. doi: 10.1186/s43074-024-00153-4

Isolating the classical and quantum coherence of a multiphoton system

doi: 10.1186/s43074-024-00153-4
基金项目: 

C. Y., F.M., J. F., and O. S. M. L. acknowledge support from the Army Research Office (ARO), through the Early Career Program (ECP) under the grant no. W911NF-22-1-0088. M. H. and O. S. M. L. thank the U.S. Department of Energy (DOE), Office of Science (SC), for supporting this research through the Program of Nuclear Physics under the NP-QIS grant: DE-SC0023694. Also, R. B. D. and O. S. M. L. acknowledge funding from the National Science Foundation through Grant No. OMA 2231387. R.J.L.-M. thankfully acknowledges financial support by DGAPA-UNAM under the project UNAM-PAPIIT IN101623.

Isolating the classical and quantum coherence of a multiphoton system

Funds: 

C. Y., F.M., J. F., and O. S. M. L. acknowledge support from the Army Research Office (ARO), through the Early Career Program (ECP) under the grant no. W911NF-22-1-0088. M. H. and O. S. M. L. thank the U.S. Department of Energy (DOE), Office of Science (SC), for supporting this research through the Program of Nuclear Physics under the NP-QIS grant: DE-SC0023694. Also, R. B. D. and O. S. M. L. acknowledge funding from the National Science Foundation through Grant No. OMA 2231387. R.J.L.-M. thankfully acknowledges financial support by DGAPA-UNAM under the project UNAM-PAPIIT IN101623.

  • 摘要: The classical properties of thermal light fields were instrumental in shaping our early understanding of light. Before the invention of the laser, thermal light was used to investigate the wave-particle duality of light. The subsequent formulation of the quantum theory of electromagnetic radiation later confirmed the classical nature of thermal light fields. Here, we fragment a pseudothermal field into its multiparticle constituents to demonstrate that it can host multiphoton dynamics mediated by either classical or quantum properties of coherence. This is shown in a forty-particle system through a process of scattering mediated by twisted paths endowed with orbital angular momentum. This platform enables accurate projections of the scattered pseudothermal system into isolated multiphoton subsystems governed by quantum dynamics. Interestingly, the isolated multiphoton subsystems exhibiting quantum coherence produce interference patterns previously attributed to entangled optical systems. As such, our work unveils novel mechanisms to isolate quantum systems from classical fields. This possibility opens new paradigms in quantum physics with enormous implications for the development of robust quantum technologies.
      关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Zurek WH. Decoherence and the Transition from Quantum to Classical. Phys Today. 1991;44(10):36–44. https://doi.org/10.1063/1.881293.
    [2] De Martini F, Sciarrino F. Colloquium: Multiparticle quantum superpositions and the quantum-to-classical transition. Rev Mod Phys. 2012;84:1765–89. https://doi.org/10.1103/RevModPhys.84.1765.
    [3] Arndt M, Hornberger K. Testing the limits of quantum mechanical superpositions. Nat Phys. 2014;10(4):271–7. https://doi.org/10.1038/nphys2863.
    [4] Vedral V. Quantifying entanglement in macroscopic systems. Nature. 2008;453(7198):1004–7. https://doi.org/10.1038/nature07124.
    [5] Gerlich S, Eibenberger S, Tomandl M, Nimmrichter S, Hornberger K, Fagan PJ, et al. Quantum interference of large organic molecules. Nat Commun. 2011;2(1):263. https://doi.org/10.1038/ncomms1263.
    [6] Fein YY, Geyer P, Zwick P, Kiałka F, Pedalino S, Mayor M, et al. Quantum superposition of molecules beyond 25 kDa. Nat Phys. 2019;15(12):1242–5. https://doi.org/10.1038/s41567-019-0663-9.
    [7] Dittel C, Dufour G, Weihs G, Buchleitner A. Wave-Particle Duality of Many-Body Quantum States. Phys Rev X. 2021;11:031041. https://doi.org/10.1103/PhysRevX.11.031041.
    [8] Lvovsky AI, Ghobadi R, Chandra A, Prasad AS, Simon C. Observation of micro-macro entanglement of light. Nat Phys. 2013;9(9):541–4. https://doi.org/10.1038/nphys2682.
    [9] Bouganne R, Bosch Aguilera M, Ghermaoui A, Beugnon J, Gerbier F. Anomalous decay of coherence in a dissipative many-body system. Nat Phys. 2020;16(1):21–5. https://doi.org/10.1038/s41567-019-0678-2.
    [10] Aspuru-Guzik A, Walther P. Photonic quantum simulators. Nat Phys. 2012;8(4):285–91. https://doi.org/10.1038/nphys2253.
    [11] You C, Miller A, León-Montiel RDJ, Magaña-Loaiza OS. Multiphoton quantum van Cittert-Zernike theorem. npj Quantum Inf. 2023;9(1):50. https://doi.org/10.1038/s41534-023-00720-w.
    [12] Dell’Anno F, Siena SD, Illuminati F. Multiphoton quantum optics and quantum state engineering. Phys Rep. 2006;428:53–108. https://doi.org/10.1016/j.physrep.2006.01.004.
    [13] Fröwis F, Sekatski P, Dür W, Gisin N, Sangouard N. Macroscopic quantum states: Measures, fragility, and implementations. Rev Mod Phys. 2018;90:025004. https://doi.org/10.1103/RevModPhys.90.025004.
    [14] Magaña-Loaiza OS, León-Montiel RDJ, Perez-Leija A, U’Ren AB, You C, Busch K, et al. Multiphoton quantum-state engineering using conditional measurements. npj Quantum Inf. 2019;5(1):80. https://doi.org/10.1038/s41534-019-0195-2.
    [15] Harder G, Bartley TJ, Lita AE, Nam SW, Gerrits T, Silberhorn C. Single-Mode Parametric-Down-Conversion States with 50 Photons as a Source for Mesoscopic Quantum Optics. Phys Rev Lett. 2016;116:143601. https://doi.org/10.1103/PhysRevLett.116.143601.
    [16] Smith TA, Shih Y. Turbulence-Free Double-slit Interferometer. Phys Rev Lett. 2018;120:063606. https://doi.org/10.1103/PhysRevLett.120.063606.
    [17] Hong M, Miller A, León-Montiel RDJ, You C, Magaña-Loaiza OS. Engineering Super-Poissonian Photon Statistics of Spatial Light Modes. Laser Photon Rev. 2023;17(10):2300117. https://doi.org/10.1002/lpor.202300117.
    [18] Gatti A, Brambilla E, Lugiato LA. Entangled Imaging and Wave-Particle Duality: From the Microscopic to the Macroscopic Realm. Phys Rev Lett. 2003;90:133603. https://doi.org/10.1103/PhysRevLett.90.133603.
    [19] You C, Quiroz-Juárez MA, Lambert A, Bhusal N, Dong C, Perez-Leija A, et al. Identification of light sources using machine learning. Appl Phys Rev. 2020;7(2):021404. https://doi.org/10.1063/1.5133846.
    [20] You C, Hong M, Bierhorst P, Lita AE, Glancy S, Kolthammer S, et al. Scalable multiphoton quantum metrology with neither pre- nor post-selected measurements. Appl Phys Rev. 2021;8(4):041406. https://doi.org/10.1063/5.0063294.
    [21] Berry MV. Disruption of wavefronts: statistics of dislocations in incoherent Gaussian random waves. J Phys A Math Gen. 1978;11(1):27. https://doi.org/10.1088/0305-4470/11/1/007.
    [22] Dennis MR, O’Holleran K, Padgett MJ. Chapter 5 Singular Optics: Optical Vortices and Polarization Singularities. vol. 53 of Progress in Optics. Elsevier; 2009. pp. 293–363. https://doi.org/10.1016/S0079-6638(08)00205-9.
    [23] Gbur GJ. Singular optics. Boca Raton: CRC Press; 2016.
    [24] Magaña-Loaiza OS, Mirhosseini M, Cross RM, Rafsanjani SMH, Boyd RW. Hanbury Brown and Twiss interferometry with twisted light. Sci Adv. 2016;2(4):e1501143. https://doi.org/10.1126/sciadv.1501143.
    [25] Jeltes T, McNamara JM, Hogervorst W, Vassen W, Krachmalnicoff V, Schellekens M, et al. Comparison of the Hanbury Brown-Twiss effect for bosons and fermions. Nature. 2007;445(7126):402–5. https://doi.org/10.1038/nature05513.
    [26] Mostafavi F, Hong M, Dawkins RB, Ferdous J, Jin RB, León-Montiel RDJ, et al. Multiphoton Quantum Imaging using Natural Light. arXiv preprint arXiv:240512794. 2024.
    [27] Wubs M. Multiphoton quantum statistics from scattered classical light. Nat Phys. 2024;20(5):689–90. https://doi.org/10.1038/s41567-024-02447-7.
    [28] Branderhorst MPA, Londero P, Wasylczyk P, Brif C, Kosut RL, Rabitz H, et al. Coherent Control of Decoherence. Science. 2008;320(5876):638–43. https://doi.org/10.1126/science.1154576.
    [29] Yu T, Eberly JH. Sudden Death of Entanglement. Science. 2009;323(5914):598–601. https://doi.org/10.1126/science.1167343.
    [30] Bender N, Sun M, Yilmaz H, Bewersdorf J, Cao H. Circumventing the optical diffraction limit with customized speckles. Optica. 2021;8(2):122–9. https://doi.org/10.1364/OPTICA.411007.
    [31] Nye JF, Berry MV. Dislocations in wave trains. Proc R Soc Lond A Math Phys Sci. 1974;336(1605):165–90. https://doi.org/10.1098/rspa.1974.0012.
    [32] Wright KC, Leslie LS, Hansen A, Bigelow NP. Sculpting the Vortex State of a Spinor BEC. Phys Rev Lett. 2009;102:030405. https://doi.org/10.1103/PhysRevLett.102.030405.
    [33] Glauber RJ. Coherent and Incoherent States of the Radiation Field. Phys Rev. 1963;131:2766–88. https://doi.org/10.1103/PhysRev.131.2766.
    [34] Mandel L, Wolf E. Optical Coherence and Quantum Optics. Cambridge University Press; 1995. https://doi.org/10.1017/CBO9781139644105.
    [35] Dawkins RB, Hong M, You C, Magaña-Loaiza OS. The quantum Gaussian-Schell model: a link between classical and quantum optics. Opt Lett. 2024;49(15):4242–5. https://doi.org/10.1364/OL.520444.
    [36] Malý P, Lüttig J, Rose PA, Turkin A, Lambert C, Krich JJ, et al. Separating single- from multi-particle dynamics in nonlinear spectroscopy. Nature. 2023;616(7956):280–7. https://doi.org/10.1038/s41586-023-05846-7.
    [37] Jaeger G. What in the (quantum) world is macroscopic? Am J Phys. 2014;82(9):896–905. https://doi.org/10.1119/1.4878358.
    [38] Hong M, Dawkins RB, Bertoni B, You C, Magaña-Loaiza OS. Nonclassical near-field dynamics of surface plasmons. Nat Phys. 2024;20(5):830–5. https://doi.org/10.1038/s41567-024-02426-y.
    [39] Hiekkamäki M, Bouchard F, Fickler R. Photonic Angular Superresolution Using Twisted N00N States. Phys Rev Lett. 2021;127:263601. https://doi.org/10.1103/PhysRevLett.127.263601.
    [40] Jha AK, Leach J, Jack B, Franke-Arnold S, Barnett SM, Boyd RW, et al. Angular Two-Photon Interference and Angular Two-Qubit States. Phys Rev Lett. 2010;104:010501. https://doi.org/10.1103/PhysRevLett.104.010501.
    [41] Mair A, Vaziri A, Weihs G, Zeilinger A. Entanglement of the orbital angular momentum states of photons. Nature. 2001;412(6844):313–6. https://doi.org/10.1038/35085529.
    [42] Georgescu IM, Ashhab S, Nori F. Quantum simulation. Rev Mod Phys. 2014;86:153–85. https://doi.org/10.1103/RevModPhys.86.153.
    [43] Zhang Z, You C, Magaña-Loaiza OS, Fickler R, León-Montiel RDJ, Torres JP, et al. Entanglement-based quantum information technology: a tutorial. Adv Opt Photon. 2024;16(1):60–162. https://doi.org/10.1364/AOP.497143.
    [44] Magaña-Loaiza OS, Boyd RW. Quantum imaging and information. Rep Prog Phys. 2019;82(12):124401. https://doi.org/10.1088/1361-6633/ab5005.
    [45] Rafsanjani SMH, Mirhosseini M, Magaña-Loaiza OS, Gard BT, Birrittella R, Koltenbah BE, et al. Quantum-enhanced interferometry with weak thermal light. Optica. 2017;4(4):487–91. https://doi.org/10.1364/OPTICA.4.000487.
  • 加载中
计量
  • 文章访问数:  21
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-27
  • 录用日期:  2024-11-20
  • 修回日期:  2024-11-10
  • 网络出版日期:  2024-11-27

目录

    /

    返回文章
    返回