[1] |
Gabor D. A new microscopic principle. Nature. 1948;161:777–8.
|
[2] |
Popescu G. Quantitative phase imaging of cells and tissues. New York: McGraw-Hill Education; 2011.
|
[3] |
Javidi B, Nomura T. Securing information by use of digital. Opt Lett. 2000;25:28–30.
|
[4] |
Qu GY, Yang WH, Song QH, Liu YL, Qiu CW, et al. Reprogrammable meta-hologram for optical encryption. Nat Commun. 2020;11:5484.
|
[5] |
Defienne H, Cameron P, Ndagano B, Lyons A, Reichert M, et al. Pixel super-resolution with spatially entangled photons. Nat Commun. 2022;13:3566.
|
[6] |
Defienne H, Ndagano B, Lyons A, Faccio D. Polarization entanglement-enabled quantum holography. Nat Phys. 2021;17:591–7.
|
[7] |
Zou XY, Wang LJ, Mandel L. Induced coherence and indistinguishability in optical interference. Phys Rev Lett. 1991;67(3):318–21.
|
[8] |
Black AN, Nguyen LD, Braverman B, Crampton KT, Evans JE, et al. Quantum-enhanced phase imaging without coincidence counting. Optica. 2023;10:952–8.
|
[9] |
Hochrainer A, Lahiri M, Erhard M, Krenn M, Zeilinger A. Quantum indistinguishability by path identity and with undetected photons. Rev Mod Phys. 2022;94:025007.
|
[10] |
Kutas M, Haase B, Klier J, Molter D, von Freymann G. Quantum-inspired terahertz spectroscopy with visible photons. Optica. 2021;8:438–41.
|
[11] |
Lemos GB, Borish V, Cole GD, Ramelow S, Lapkiewicz R, et al. Quantum imaging with undetected photons. Nature. 2014;512:409–12.
|
[12] |
Gilaberte Basset M, Hochrainer A, Töpfer S, Riexinger F, Bickert P, et al. Video-rate imaging with undetected photons. Laser Photon Rev. 2021;15:2000327.
|
[13] |
Kviatkovsky I, Chrzanowski HM, Avery EG, Bartolomaeus H, Ramelow S. Microscopy with undetected photons in the mid-infrared. Sci Adv. 2020;6:eabd0264.
|
[14] |
Töpfer S, Gilaberte Basset M, Fuenzalida J, Steinlechner F, Torres JP, et al. Quantum holography with undetected light. Sci Adv. 2022;8:eabl4301.
|
[15] |
Kalashnikov DA, Paterova AV, Kulik SP, Krivitsky LA. Infrared spectroscopy with visible light. Nat Photon. 2016;10:98–101.
|
[16] |
Lindner C, Kunz J, Herr SJ, Kiessling J, Wolf S, et al. Accurate, high-resolution dispersive Fourier-transform spectroscopy with undetected photons. Opt Continuum. 2022;1:189–96.
|
[17] |
Lee SK, Yoon TH, Cho M. Molecular rovibrational spectroscopy with undetected photons via single-photon interferometry. Phys Rev Appl. 2020;14:014045.
|
[18] |
Vanselow A, Kaufmann P, Zorin I, Heise B, Chrzanowski HM, et al. Frequency-domain optical coherence tomography with undetected mid-infrared photons. Optica. 2020;7:1729–36.
|
[19] |
Paterova AV, Yang H, An C, Kalashnikov DA, Krivitsky LA. Tunable optical coherence tomography in the infrared range using visible photons. Quantum Sci Technol. 2018;3:025008.
|
[20] |
Vallés A, Jiménez G, Salazar-Serrano LJ, Torres JP. Optical sectioning in induced coherence tomography with frequency-entangled photons. Phys Rev A. 2018;97:023824.
|
[21] |
Schnars U, Falldorf C, Watson J, Jüptner W. Digital holography. In: Digital Holography and Wavefront Sensing. 2nd ed. Berlin Heidlerberg: Springer; 2015. pp. 39–68.
|
[22] |
Hariharan P, Oreb BF, Eiju T. Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm. Appl Opt. 1987;26:2504–6.
|
[23] |
Zuo C, Qian JM, Feng SJ, Feng SJ, Yin W, et al. Deep learning in optical metrology: a review. Light Sci Appl. 2022;11:39.
|
[24] |
Fuenzalida J, Hochrainer A, Lemos GB, Ortega E, Lapkiewicz R, et al. Resolution of quantum imaging with undetected photons. Quantum. 2022;6:646.
|
[25] |
Vega A, Santos EA, Fuenzalida J, Gilaberte Basset M, Pertsch T, et al. Fundamental resolution limit of quantum imaging with undetected photons. Phys Rev Res. 2022;4:033252.
|
[26] |
Qian GW, Xu XQ, Zhu SA, Xu CR, Gao F, et al. Quantum induced coherence light detection and ranging. Phys Rev Lett. 2023;131:033603.
|
[27] |
Rivenson Y, Göröcs Z, Günaydin H, Zhang YB, Wang HD, et al. Deep learning microscopy. Optica. 2017;4:1437–43.
|
[28] |
Li YZ, Xue YJ, Tian L. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media. Optica. 2018;5:1181–90.
|
[29] |
Durand A, Wiesner T, Gardner MA, Robitaille LÉ, Bilodeau A, et al. A machine learning approach for online automated optimization of super-resolution optical microscopy. Nat Commun. 2018;9:5247.
|
[30] |
Ghosh K, Stuke A, Todorović M, Jørgensen PB, Schmidt MN, et al. Deep learning spectroscopy: Neural networks for molecular excitation spectra. Adv Sci. 2019;6:1801367.
|
[31] |
Ho CS, Jean N, Hogan CA, Blackmon L, Jeffrey SS, et al. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat Commun. 2019;10:1–8.
|
[32] |
Hampson KM, Turcotte R, Miller DT, Kurokawa K, Males JR, et al. Adaptive optics for high-resolution imaging. Nat Rev Methods Primers. 2021;1:68.
|
[33] |
Feng BY, Guo HY, Xie MY, Boominathan V, Sharma MK, et al. NeuWS: Neural wavefront shaping for guidestar-free imaging through static and dynamic scattering media. Sci Adv. 2023;9:eadg4671.
|
[34] |
Shimobaba T, Blinder D, Birnbaum T, Hoshi I, Shiomi H, et al. Deep-learning computational holography: A review. Front Photonics. 2022;3:854391.
|
[35] |
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.
|
[36] |
Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans Pattern Anal Mach Intell. 2017;40:834–48.
|
[37] |
Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). IEEE; 2017. p. 4700–8.
|
[38] |
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2024;13:604–6.
|
[39] |
Dainty JC. Laser speckle and related phenomena. Berlin Heidelberg: Springer Science & Business Media; 2013.
|
[40] |
Wang ZH, Chen J, Hoi SCH. Deep learning for image super-resolution: A survey. IEEE Trans Pattern Anal Mach Intell. 2020;43:3365–87.
|
[41] |
Wang HA, Rivenson Y, Jin YY, Wei ZS, Gao R, et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nat Methods. 2019;16:103–10.
|
[42] |
Ouyang W, Aristov A, Lelek M, Hao X, Zimmer C. Deep learning massively accelerates super-resolution localization microscopy. Nat Biotechnol. 2018;36:460–8.
|
[43] |
Ulusoy E, Onural L, Ozaktas HM. Full-complex amplitude modulation with binary spatial light modulators. J Opt Soc Am A. 2011;28:2310–21.
|
[44] |
Goorden SA, Bertolotti J, Mosk AP. Superpixel-based spatial amplitude and phase modulation using a digital micromirror device. Opt Express. 2014;22:17999–8009.
|
[45] |
Neto LG, Roberge D, Sheng YL. Full-range, continuous, complex modulation by the use of two coupled-mode liquid-crystal televisions. Appl Opt. 1996;35:4567–76.
|
[46] |
Balasubramani V, Kuś A, Tu HY, Cheng CJ, Baczewska M, et al. Holographic tomography: Techniques and biomedical applications. Appl Opt. 2021;60:B65–80.
|
[47] |
Wu YC, Ozcan A. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring. Methods. 2018;136:4–16.
|
[48] |
Heimbeck MS, Everitt HO. Terahertz digital holographic imaging. Adv Opt Photon. 2020;12:1–59.
|
[49] |
Wan M, Healy JJ, Sheridan JT. Terahertz phase imaging and biomedical applications. Opt Laser Technol. 2020;122:105859.
|
[50] |
Paszke A, Gross S, Massa F, Lerer A, Bradbury J, et al. Pytorch: An imperative style, high-performance deep learning library. In: Wallach H, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox E, et al., editors. Advances in Neural Information Processing Systems 32. New York: Curran Associates; 2019. p. 8024–35.
|
[51] |
Zhao H, Gallo O, Frosio I, Kautz J. Loss functions for image restoration with neural networks. IEEE Trans Comput Imaging. 2016;3:47–57.
|
[52] |
Deng L. The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Processing Magazine. 2012;29:141–2.
|
[53] |
Xiao H, Rasul K, Vollgraf R. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. 2017; arXiv preprint arXiv:1708.07747.
|
[54] |
Krizhevsky A, Hinton G, et al. Learning multiple layers of features from tiny images. Toronto: University of Toronto; 2009.
|