留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nonlinear Raman-Nath diffraction in submicron-thick periodically poled lithium niobate thin film

Nonlinear Raman-Nath diffraction in submicron-thick periodically poled lithium niobate thin film[J]. PhotoniX. doi: 10.1186/s43074-024-00157-0
引用本文: Nonlinear Raman-Nath diffraction in submicron-thick periodically poled lithium niobate thin film[J]. PhotoniX. doi: 10.1186/s43074-024-00157-0
Xiao-Ni Li, Ling-Zhi Peng, Yuan-Yuan Liu, Li-Hong Hong, De-Ming Hu, Yuan-Yuan Zhao, Xuan-Ming Duan, Bao-Qin Chen, Zhi-Yuan Li. Nonlinear Raman-Nath diffraction in submicron-thick periodically poled lithium niobate thin film[J]. PhotoniX. doi: 10.1186/s43074-024-00157-0
Citation: Xiao-Ni Li, Ling-Zhi Peng, Yuan-Yuan Liu, Li-Hong Hong, De-Ming Hu, Yuan-Yuan Zhao, Xuan-Ming Duan, Bao-Qin Chen, Zhi-Yuan Li. Nonlinear Raman-Nath diffraction in submicron-thick periodically poled lithium niobate thin film[J]. PhotoniX. doi: 10.1186/s43074-024-00157-0

Nonlinear Raman-Nath diffraction in submicron-thick periodically poled lithium niobate thin film

doi: 10.1186/s43074-024-00157-0
基金项目: 

The authors are grateful for the financial support from Science and Technology Project of Guangdong (2020B010190001), National Natural Science Foundation of China (11974119), and Guangzhou Science and Technology Plan Project (2023A04J1309).

Nonlinear Raman-Nath diffraction in submicron-thick periodically poled lithium niobate thin film

Funds: 

The authors are grateful for the financial support from Science and Technology Project of Guangdong (2020B010190001), National Natural Science Foundation of China (11974119), and Guangzhou Science and Technology Plan Project (2023A04J1309).

  • 摘要: Nonlinear Raman-Nath diffraction (NRND) is a unique diffraction pattern formed when a high-intensity laser interacts with a nonlinear microstructure bulky medium relying only on the transverse phase matching condition. Here, we report on the first experimental observation of NRND in a submicron-thick periodically poled lithium niobate thin film (PPLNTF) by geometric reflection pumped via a near-infrared femtosecond pulse laser. We further observe the evolution of the diffracted signals after broadening of the pump laser via a fused silica plate. We systematically analyze the spectral properties of multi-order second harmonic generation (SHG) diffracted signals exhibiting asymmetric distributions and explicitly clarify their phase matching conditions, simultaneously considering the impacts of the incident pump wavelength, the sample poling period, and the incident angle on the properties of the angular distribution diffracted beams. The realization of NRND phenomena with appreciable on-chip efficiency at a submicron interaction length is mainly attributed to the significant contribution of domain walls to enhance the nonlinear effects along with the modulation of second-order nonlinear susceptibilities χ(2). This NRND scheme provides a high-resolution, non-destructive on-chip microstructure diagnostic method, and even has the potential to develop novel on-chip integrated optoelectronic devices for applications such as precision metrology, biosensing, and spectral analysis.
      关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Chen JY, Sua YM, Fan H, Huang YP. Modal phase matched lithium niobate nanocircuits for integrated nonlinear photonics. OSA Continuum. 2018;1:229–42.
    [2] Hong LH, Chen BQ, Hu CY, Li ZY. Analytical solution of second-harmonic generation in a lithium-niobate birefringence thin-film waveguide via modal phase matching. Phys Rev A. 2018;98: 023820.
    [3] L. Z. Peng, L. Q. Liu, X. N. Li, L. H. Hong, and Z. Y. Li, “Efficient simultaneous second harmonic generation and dispersive wave generation in lithium niobate thin film,” Laser and Photonics Reviews. 2024:2400335.
    [4] Asobe M, Nishida Y, Tadanaga O, Miyazawa H, Suzuki H. Wavelength conversion using quasi-phase matched LiNbO3 waveguides. IEICE Trans Electron. 2005;88:335–41.
    [5] Peng LZ, Hong LH, Li ZY. Theoretical solution of second-harmonic generation in periodically poled lithium niobate and chirped periodically poled lithium niobate thin film via quasi-phase-matching. Phys Rev A. 2021;104: 053503.
    [6] Zhang HH, Li QY, Zhu HB, Cai LT, Hui H. Second harmonic generation by quasi-phase matching in a lithium niobate thin film. Optical Materials Express. 2022;12:2252–9.
    [7] Armstrong JA, Bloembergen N, Ducuing J, Pershan PS. Interactions between light waves in a nonlinear dielectric. Phys Rev. 1962;127:1918–39.
    [8] Fejer MM, Magel GA, Jundt DH, Byer RL. Quasi-phase-matched second harmonic generation: Tuning and tolerances. IEEE J Quantum Electron. 1992;28:2631.
    [9] Freund I. Nonlinear diffraction. Phys Rev Lett. 1968;21:1404.
    [10] Shapira A, Arie A. Phase-matched nonlinear diffraction. Opt Lett. 2011;36:1933–5.
    [11] Saltiel SM, Neshev DN, Krolikowski W, Arie A, Bang O, Kivshar YS. Multiorder nonlinear diffraction in frequency doubling processes. Opt Lett. 2009;34:848–50.
    [12] Vyunishev AM, Slabko VV, Baturin IS, Akhmatkhanov AR, Shur VY. Nonlinear Raman-Nath diffraction of femtosecond laser pulses. Opt Lett. 2014;39:4231–4.
    [13] Sheng Y, Kong Q, Wang WJ, Kalinowski K, Krolikowski W. Theoretical investigations of nonlinear Raman-Nath diffraction in the frequency doubling process. J Phys B: At Mol Opt Phys. 2012;45: 055401.
    [14] Hong LH, Chen BQ, Hu CY, Li ZY. Ultrabroadband nonlinear Raman-Nath diffraction against femtosecond pulse laser. Photonics Research. 2022;10:905–12.
    [15] Deng X, Ren H, Lao H, Chen X. Non-collinear efficient continuous optical frequency doubling in a periodically poled lithium niobate. Appl Phys B. 2010;100:755–8.
    [16] Sheng Y, Roppo V, Kalinowski K, Krolikowski W. Role of a localized modulation of χ(2) in Čerenkov second-harmonic generation in nonlinear bulk medium. Opt Lett. 2012;37:3864–6.
    [17] Roppo V, Kalinowski K, Sheng Y, Krolikowski W, Cojocaru C, Trull J. Unified approach to Čerenkov second harmonic generation. Opt Express. 2013;21:25715–26.
    [18] Hong LH, Chen BQ, Hu CY, He P, Li ZY. Rainbow Cherenkov Second-Harmonic Radiation. Phys Rev Appl. 2022;18: 044063.
    [19] Poberaj G, Hu H, Sohler W, Guenter P. Lithium niobate thin film (LNTF) for micro-photonic devices. Laser Photonics Rev. 2012;6:488–503.
    [20] Jia YC, Wang L, Chen F. Ion-cut lithium niobate thin film technology: Recent advances and perspectives. Appl Phys Rev. 2021;8: 011307.
    [21] Weis RS, Gaylord TK. Lithium niobate: Summary of physical properties and crystal structure. Appl Phys A. 1985;37:191–203.
    [22] Boyd GD, Miller RC, Nassau K, Bond WL, Savage A. LiNbO3: An efficient phase matchable nonlinear optical material. Appl Phys Lett. 1964;5:234–6.
    [23] Alibart O, D’Auria V, Micheli MD, Doutrev F, Kaiser F, Labonté L, Lunghi T, Picholle É, Tanzilli S. Quantum photonics at telecom wavelengths based on lithium niobate waveguides. J Opt. 2016;18: 104001.
    [24] Kong Y, Bo F, Wang W, Zheng D, Liu H, Zhang G, Rupp R, Xu J. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices. Adv Mater. 2020;32:1806452–65.
    [25] Boes A, Chang L, Langrock C, Yu M, Zhang M, Lin Q, Loncar M, Fejer M, Bowers J, Mitchell A. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science. 2023;379:eabj4396.
    [26] Wang C, Langrock C, Marandi A, Jankowski M, Zhang M, Desiatov B, Fejer MM, Lončar M. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica. 2018;5:1438–41.
    [27] Desiatov B, Shams-Ansari A, Zhang M, Wang C, Lončar M. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica. 2019;6:380–4.
    [28] Rao A, Fathpour S. Compact Lithium Niobate Electrooptic Modulators. IEEE J Sel Top Quantum Electron. 2017;24:1–14.
    [29] Boes A, Corcoran B, Chang L, Bowers J, Mitchell A. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photonics Rev. 2018;12:1700256.
    [30] Rao A, Abdelsalam K, Sjaardema T, Honardoost A, Camacho-Gonzalez GF, Fathpour S. Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600 %W−1cm−2. Opt Express. 2019;27:25920–30.
    [31] Niu YF, Lin C, Liu XY, Chen Y, Hu XP, Zhang Y, Cai XL, Gong YX, Xie ZD, Zhu SN. Optimizing the efficiency of a periodically poled LNTF waveguide using in situ monitoring of the ferroelectric domains. Appl Phys Lett. 2020;116:101104.
    [32] Chen JY, Tang C, Ma ZH, Li Z, Sua YM, Huang YP. Efficient and highly tunable second-harmonic generation in Z-cut periodically poled lithium niobate nanowaveguides. Opt Lett. 2020;45:3789–92.
    [33] Wolf R, Jia YC, Bonaus S, Werner CS, Herr SJ, Breunig I, Buse K, Zappe H. Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries. Optica. 2018;5:872–5.
    [34] Hao ZZ, Zhang L, Gao A, Mao WB, Lyu XD, Gao XM, Bo F, Gao F, Zhang GQ, Xu JJ. Periodically poled lithium niobate whispering gallery mode microcavities on a chip. Science China Physics, Mechanics and Astronomy. 2018;61: 114211.
    [35] Hao ZZ, Zhang L, Mao WB, Gao A, Gao XM, Gao F, Bo F, Zhang GQ, Xu JJ. Second-harmonic generation using d33 in periodically poled lithium niobate microdisk resonators. Photonics Research. 2020;8:311–7.
    [36] M. Z. Li, L. H. Hong, and Z. Y. Li, “Intense two-octave ultraviolet-visible-infrared supercontinuum laser via high-efficiency one-octave second-harmonic generation,” Research. 2022.
    [37] Peng LH, Hsu CC, Shih YC. Second-harmonic green generation from two-dimensional χ(2) nonlinear photonic crystal with orthorhombic lattice structure. Appl Phys Lett. 2003;83:3447–9.
    [38] Sheng Y, Dou JH, Ma BQ, Cheng BY, Zhang DZ. Broadband efficient second harmonic generation in media with a short-range order. Appl Phys Lett. 2007;91:011101.
    [39] Sheng Y, Wang T, Ma BQ, Qu E, Cheng BY, Zhang DZ. Anisotropy of domain broadening in periodically poled lithium niobate crystals. Appl Phys Lett. 2006;88:041121.
    [40] Chen YP, Dang WR, Zheng YL, Chen XF, Deng XW. Spatial modulation of second-harmonic generation via nonlinear Raman-Nath diffraction in an aperiodically poled lithium tantalite. Opt Lett. 2013;38:2298–300.
    [41] Fragemann A, Pasiskevicius V, Laurell F. Second-order nonlinearities in the domain walls of periodically poled KTiOPO4. Appl Phys Lett. 2004;85:375–7.
    [42] G. Stone, and V. Dierolf, “Raman Enhancement Across the Domain Wall in Ferroelectric Lithium Niobate,” Optical Society of America, CE6–6. 2009.
    [43] Capek P, Stone G, Dierolf V, Althouse C, Gopolan V. Raman studies of ferroelectric domain walls in lithium tantalate and niobate. Phys Status Solidi C. 2007;4:830–3.
    [44] Bozhevolnyi SI, Hvam JRM, Pedersen K, Laurell F, Karlsson H, Skettrup T, Belmonte M. Second-harmonic imaging of ferroelectric domain walls. Appl Phys Lett. 1998;73:1814–6.
    [45] Rogan RC, Tamura N, Swift GA, Üstündag E. Direct measurement of triaxial strain fields around ferroelectric domains using X-ray microdiffraction. Nat Mater. 2003;2:379–81.
    [46] Deng XW, Ren HJ, Chen XF. Phase-matched second harmonic generation by enhanced nonlinearities in ferroelectric domain walls. CLEO: Science and Innovations. Optica Publishing Group; 2011.
  • 加载中
计量
  • 文章访问数:  39
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-19
  • 录用日期:  2024-12-12
  • 修回日期:  2024-11-23
  • 网络出版日期:  2024-12-27

目录

    /

    返回文章
    返回