[1] |
Chen JY, Sua YM, Fan H, Huang YP. Modal phase matched lithium niobate nanocircuits for integrated nonlinear photonics. OSA Continuum. 2018;1:229–42.
|
[2] |
Hong LH, Chen BQ, Hu CY, Li ZY. Analytical solution of second-harmonic generation in a lithium-niobate birefringence thin-film waveguide via modal phase matching. Phys Rev A. 2018;98: 023820.
|
[3] |
L. Z. Peng, L. Q. Liu, X. N. Li, L. H. Hong, and Z. Y. Li, “Efficient simultaneous second harmonic generation and dispersive wave generation in lithium niobate thin film,” Laser and Photonics Reviews. 2024:2400335.
|
[4] |
Asobe M, Nishida Y, Tadanaga O, Miyazawa H, Suzuki H. Wavelength conversion using quasi-phase matched LiNbO3 waveguides. IEICE Trans Electron. 2005;88:335–41.
|
[5] |
Peng LZ, Hong LH, Li ZY. Theoretical solution of second-harmonic generation in periodically poled lithium niobate and chirped periodically poled lithium niobate thin film via quasi-phase-matching. Phys Rev A. 2021;104: 053503.
|
[6] |
Zhang HH, Li QY, Zhu HB, Cai LT, Hui H. Second harmonic generation by quasi-phase matching in a lithium niobate thin film. Optical Materials Express. 2022;12:2252–9.
|
[7] |
Armstrong JA, Bloembergen N, Ducuing J, Pershan PS. Interactions between light waves in a nonlinear dielectric. Phys Rev. 1962;127:1918–39.
|
[8] |
Fejer MM, Magel GA, Jundt DH, Byer RL. Quasi-phase-matched second harmonic generation: Tuning and tolerances. IEEE J Quantum Electron. 1992;28:2631.
|
[9] |
Freund I. Nonlinear diffraction. Phys Rev Lett. 1968;21:1404.
|
[10] |
Shapira A, Arie A. Phase-matched nonlinear diffraction. Opt Lett. 2011;36:1933–5.
|
[11] |
Saltiel SM, Neshev DN, Krolikowski W, Arie A, Bang O, Kivshar YS. Multiorder nonlinear diffraction in frequency doubling processes. Opt Lett. 2009;34:848–50.
|
[12] |
Vyunishev AM, Slabko VV, Baturin IS, Akhmatkhanov AR, Shur VY. Nonlinear Raman-Nath diffraction of femtosecond laser pulses. Opt Lett. 2014;39:4231–4.
|
[13] |
Sheng Y, Kong Q, Wang WJ, Kalinowski K, Krolikowski W. Theoretical investigations of nonlinear Raman-Nath diffraction in the frequency doubling process. J Phys B: At Mol Opt Phys. 2012;45: 055401.
|
[14] |
Hong LH, Chen BQ, Hu CY, Li ZY. Ultrabroadband nonlinear Raman-Nath diffraction against femtosecond pulse laser. Photonics Research. 2022;10:905–12.
|
[15] |
Deng X, Ren H, Lao H, Chen X. Non-collinear efficient continuous optical frequency doubling in a periodically poled lithium niobate. Appl Phys B. 2010;100:755–8.
|
[16] |
Sheng Y, Roppo V, Kalinowski K, Krolikowski W. Role of a localized modulation of χ(2) in Čerenkov second-harmonic generation in nonlinear bulk medium. Opt Lett. 2012;37:3864–6.
|
[17] |
Roppo V, Kalinowski K, Sheng Y, Krolikowski W, Cojocaru C, Trull J. Unified approach to Čerenkov second harmonic generation. Opt Express. 2013;21:25715–26.
|
[18] |
Hong LH, Chen BQ, Hu CY, He P, Li ZY. Rainbow Cherenkov Second-Harmonic Radiation. Phys Rev Appl. 2022;18: 044063.
|
[19] |
Poberaj G, Hu H, Sohler W, Guenter P. Lithium niobate thin film (LNTF) for micro-photonic devices. Laser Photonics Rev. 2012;6:488–503.
|
[20] |
Jia YC, Wang L, Chen F. Ion-cut lithium niobate thin film technology: Recent advances and perspectives. Appl Phys Rev. 2021;8: 011307.
|
[21] |
Weis RS, Gaylord TK. Lithium niobate: Summary of physical properties and crystal structure. Appl Phys A. 1985;37:191–203.
|
[22] |
Boyd GD, Miller RC, Nassau K, Bond WL, Savage A. LiNbO3: An efficient phase matchable nonlinear optical material. Appl Phys Lett. 1964;5:234–6.
|
[23] |
Alibart O, D’Auria V, Micheli MD, Doutrev F, Kaiser F, Labonté L, Lunghi T, Picholle É, Tanzilli S. Quantum photonics at telecom wavelengths based on lithium niobate waveguides. J Opt. 2016;18: 104001.
|
[24] |
Kong Y, Bo F, Wang W, Zheng D, Liu H, Zhang G, Rupp R, Xu J. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices. Adv Mater. 2020;32:1806452–65.
|
[25] |
Boes A, Chang L, Langrock C, Yu M, Zhang M, Lin Q, Loncar M, Fejer M, Bowers J, Mitchell A. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science. 2023;379:eabj4396.
|
[26] |
Wang C, Langrock C, Marandi A, Jankowski M, Zhang M, Desiatov B, Fejer MM, Lončar M. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica. 2018;5:1438–41.
|
[27] |
Desiatov B, Shams-Ansari A, Zhang M, Wang C, Lončar M. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica. 2019;6:380–4.
|
[28] |
Rao A, Fathpour S. Compact Lithium Niobate Electrooptic Modulators. IEEE J Sel Top Quantum Electron. 2017;24:1–14.
|
[29] |
Boes A, Corcoran B, Chang L, Bowers J, Mitchell A. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photonics Rev. 2018;12:1700256.
|
[30] |
Rao A, Abdelsalam K, Sjaardema T, Honardoost A, Camacho-Gonzalez GF, Fathpour S. Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600 %W−1cm−2. Opt Express. 2019;27:25920–30.
|
[31] |
Niu YF, Lin C, Liu XY, Chen Y, Hu XP, Zhang Y, Cai XL, Gong YX, Xie ZD, Zhu SN. Optimizing the efficiency of a periodically poled LNTF waveguide using in situ monitoring of the ferroelectric domains. Appl Phys Lett. 2020;116:101104.
|
[32] |
Chen JY, Tang C, Ma ZH, Li Z, Sua YM, Huang YP. Efficient and highly tunable second-harmonic generation in Z-cut periodically poled lithium niobate nanowaveguides. Opt Lett. 2020;45:3789–92.
|
[33] |
Wolf R, Jia YC, Bonaus S, Werner CS, Herr SJ, Breunig I, Buse K, Zappe H. Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries. Optica. 2018;5:872–5.
|
[34] |
Hao ZZ, Zhang L, Gao A, Mao WB, Lyu XD, Gao XM, Bo F, Gao F, Zhang GQ, Xu JJ. Periodically poled lithium niobate whispering gallery mode microcavities on a chip. Science China Physics, Mechanics and Astronomy. 2018;61: 114211.
|
[35] |
Hao ZZ, Zhang L, Mao WB, Gao A, Gao XM, Gao F, Bo F, Zhang GQ, Xu JJ. Second-harmonic generation using d33 in periodically poled lithium niobate microdisk resonators. Photonics Research. 2020;8:311–7.
|
[36] |
M. Z. Li, L. H. Hong, and Z. Y. Li, “Intense two-octave ultraviolet-visible-infrared supercontinuum laser via high-efficiency one-octave second-harmonic generation,” Research. 2022.
|
[37] |
Peng LH, Hsu CC, Shih YC. Second-harmonic green generation from two-dimensional χ(2) nonlinear photonic crystal with orthorhombic lattice structure. Appl Phys Lett. 2003;83:3447–9.
|
[38] |
Sheng Y, Dou JH, Ma BQ, Cheng BY, Zhang DZ. Broadband efficient second harmonic generation in media with a short-range order. Appl Phys Lett. 2007;91:011101.
|
[39] |
Sheng Y, Wang T, Ma BQ, Qu E, Cheng BY, Zhang DZ. Anisotropy of domain broadening in periodically poled lithium niobate crystals. Appl Phys Lett. 2006;88:041121.
|
[40] |
Chen YP, Dang WR, Zheng YL, Chen XF, Deng XW. Spatial modulation of second-harmonic generation via nonlinear Raman-Nath diffraction in an aperiodically poled lithium tantalite. Opt Lett. 2013;38:2298–300.
|
[41] |
Fragemann A, Pasiskevicius V, Laurell F. Second-order nonlinearities in the domain walls of periodically poled KTiOPO4. Appl Phys Lett. 2004;85:375–7.
|
[42] |
G. Stone, and V. Dierolf, “Raman Enhancement Across the Domain Wall in Ferroelectric Lithium Niobate,” Optical Society of America, CE6–6. 2009.
|
[43] |
Capek P, Stone G, Dierolf V, Althouse C, Gopolan V. Raman studies of ferroelectric domain walls in lithium tantalate and niobate. Phys Status Solidi C. 2007;4:830–3.
|
[44] |
Bozhevolnyi SI, Hvam JRM, Pedersen K, Laurell F, Karlsson H, Skettrup T, Belmonte M. Second-harmonic imaging of ferroelectric domain walls. Appl Phys Lett. 1998;73:1814–6.
|
[45] |
Rogan RC, Tamura N, Swift GA, Üstündag E. Direct measurement of triaxial strain fields around ferroelectric domains using X-ray microdiffraction. Nat Mater. 2003;2:379–81.
|
[46] |
Deng XW, Ren HJ, Chen XF. Phase-matched second harmonic generation by enhanced nonlinearities in ferroelectric domain walls. CLEO: Science and Innovations. Optica Publishing Group; 2011.
|