[1] |
Chen Y, Zhao H, Mao J, Chirarattananon P, Helbling EF, Hyun NSP, et al. Controlled flight of a microrobot powered by soft artificial muscles. Nature. 2019;575(7782):324–9.
|
[2] |
Medina-Sánchez M, Magdanz V, Guix M, Fomin VM, Schmidt OG. Swimming microrobots: Soft, reconfigurable, and smart. Adv Funct Mater. 2018;28(25):1707228.
|
[3] |
Wang Z, Klingner A, Magdanz V, Misra S, Khalil IS. Soft bio-microrobots: toward biomedical applications. Adv Intell Syst. 2024;6(2):2300093.
|
[4] |
Xin C, Jin D, Hu Y, Yang L, Li R, Wang L, et al. Environmentally adaptive shape-morphing microrobots for localized cancer cell treatment. ACS Nano. 2021;15(11):18048–59.
|
[5] |
Pan T, Shi Y, Zhao N, Xiong J, Xiao Y, Xin H, et al. Bio-micromotor tweezers for noninvasive bio-cargo delivery and precise therapy. Adv Funct Mater. 2022;32(16):2111038.
|
[6] |
Wang B, Chan KF, Yuan K, Wang Q, Xia X, Yang L, et al. Endoscopy-assisted magnetic navigation of biohybrid soft microrobots with rapid endoluminal delivery and imaging. Sci Rob. 2021;6(52):eabd2813.
|
[7] |
Wu L, Yuan X, Tang Y, Wageh S, Al-Hartomy OA, Al-Sehemi AG, et al. MXene sensors based on optical and electrical sensing signals: from biological, chemical, and physical sensing to emerging intelligent and bionic devices. PhotoniX. 2023;4(1):15.
|
[8] |
Bunea AI, Martella D, Nocentini S, Parmeggiani C, Taboryski R, Wiersma DS. Light-powered microrobots: challenges and opportunities for hard and soft responsive microswimmers. Adv Intell Syst. 2021;3(4):2000256.
|
[9] |
Palagi S, Fischer P. Bioinspired microrobots. Nat Rev Mater. 2018;3(6):113–24.
|
[10] |
Magdanz V, Stoychev G, Ionov L, Sanchez S, Schmidt OG. Stimuli-responsive microjets with reconfigurable shape. Angew Chem Int Ed Engl. 2014;126(10):2711–5.
|
[11] |
Li R, Jin D, Pan D, Ji S, Xin C, Liu G, et al. Stimuli-responsive actuator fabricated by dynamic asymmetric femtosecond bessel beam for in situ particle and cell manipulation. ACS Nano. 2020;14(5):5233–42.
|
[12] |
Kim H, Ahn SK, Mackie DM, Kwon J, Kim SH, Choi C, et al. Shape morphing smart 3D actuator materials for micro soft robot. Mater Today. 2020;41:243–69.
|
[13] |
Yin C, Wei F, Zhan Z, Zheng J, Yao L, Yang W, et al. Untethered microgripper-the dexterous hand at microscale. Biomed Microdevices. 2019;21:1–18.
|
[14] |
Li H, Go G, Ko SY, Park JO, Park S. Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery. Smart Mater Struct. 2016;25(2): 027001.
|
[15] |
Wang B, Liu D, Liao Y, Huang Y, Ni M, Wang M, et al. Spatiotemporally actuated hydrogel by magnetic swarm nanorobotics. ACS Nano. 2022;16(12):20985–1001.
|
[16] |
Pan Y, Lee LH, Yang Z, Hassan SU, Shum HC. Co-doping optimized hydrogel-elastomer micro-actuators for versatile biomimetic motions. Nanoscale. 2021;13(45):18967–76.
|
[17] |
Xing J, Yin T, Li S, Xu T, Ma A, Chen Z, et al. Sequential magneto-actuated and optics-triggered biomicrorobots for targeted cancer therapy. Adv Funct Mater. 2021;31(11):2008262.
|
[18] |
Sitti M, Wiersma DS. Pros and cons: Magnetic versus optical microrobots. Adv Mater. 2020;32(20): 1906766.
|
[19] |
Hu X, Yasa IC, Ren Z, Goudu SR, Ceylan H, Hu W, et al. Magnetic soft micromachines made of linked microactuator networks. Sci Adv. 2021;7(23):eabe8436.
|
[20] |
Maria-Hormigos R, Mayorga-Martinez CC, Pumera M. Soft magnetic microrobots for photoactive pollutant removal. Small Methods. 2023;7(1):2201014.
|
[21] |
Fan X, Sun M, Sun L, Xie H. Ferrofluid droplets as liquid microrobots with multiple deformabilities. Adv Funct Mater. 2020;30(24): 2000138.
|
[22] |
Dong X, Kheiri S, Lu Y, Xu Z, Zhen M, Liu X. Toward a living soft microrobot through optogenetic locomotion control of Caenorhabditis elegans. Sci Robot. 2021;6(55):eabe3950.
|
[23] |
Xiong J, Li X, He Z, Shi Y, Pan T, Zhu G, et al. Light-controlled soft bio-microrobot. Light Sci Appl. 2024;13(1):55.
|
[24] |
Ricotti L, Trimmer B, Feinberg AW, Raman R, Parker KK, Bashir R, et al. Biohybrid actuators for robotics: a review of devices actuated by living cells. Sci Robot. 2017;2(12):eaaq0495.
|
[25] |
Kim Y, Parada GA, Liu S, Zhao X. Ferromagnetic soft continuum robots. Sci Robot. 2019;4(33):eaax7329.
|
[26] |
Palagi S, Singh DP, Fischer P. Light-controlled micromotors and soft microrobots. Adv Opt Mater. 2019;7(16):1900370.
|
[27] |
Van-Oosten CL, Bastiaansen CW, Broer DJ. Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat Mater. 2009;8(8):677–82.
|
[28] |
Yu Y, Nakano M, Ikeda T. Directed bending of a polymer film by light. Nature. 2003;425(6954):145–145.
|
[29] |
Xiong J, Shi Y, Pan T, Lu D, He Z, Wang D, et al. Wake-Riding Effect-Inspired Opto-Hydrodynamic Diatombot for Non-Invasive Trapping and Removal of Nano-Biothreats. Adv Sci. 2023;10(18):2301365.
|
[30] |
Pang X, Lv JA, Zhu C, Qin L, Yu Y. Photodeformable azobenzene-containing liquid crystal polymers and soft actuators. Adv Mater. 2019;31(52):1904224.
|
[31] |
Xin H, Zhao N, Wang Y, Zhao X, Pan T, Shi Y, et al. Optically controlled living micromotors for the manipulation and disruption of biological targets. Nano Lett. 2020;20(10):7177–85.
|
[32] |
Wang Z, Guo W, Li L, Luk’Yanchuk B, Khan A, Liu Z, et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat Commun. 2011;2(1):218.
|
[33] |
Li YC, Xin HB, Lei HX, Liu LL, Li YZ, Zhang Y, et al. Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet. Light Sci Appl. 2016;5(12): e16176.
|
[34] |
Liang L, Teh DB, Dinh ND, Chen W, Chen Q, Wu Y, et al. Upconversion amplification through dielectric superlensing modulation. Nat Commun. 2019;10(1):1391.
|
[35] |
Leander BS, Esson HJ, Breglia SA. Macroevolution of complex cytoskeletal systems in euglenids. BioEssays. 2007;29(10):987–1000.
|
[36] |
Leander BS. Did trypanosomatid parasites have photosynthetic ancestors? Trends Microbiol. 2004;12(6):251–8.
|
[37] |
Porter ME, Sale WS. The 9+ 2 axoneme anchors multiple inner arm dyneins and a network of kinases and phosphatases that control motility. J Cell Biol. 2000;151(5):F37–42.
|
[38] |
Ginger ML, Portman N, McKean PG. Swimming with protists: perception, motility and flagellum assembly. Nat Rev Microbiol. 2008;6(11):838–50.
|
[39] |
Mitchell DR. Orientation of the central pair complex during flagellar bend formation in Chlamydomonas. Cell Motil Cytoskeleton. 2003;56(2):120–9.
|
[40] |
Iseki M, Matsunaga S, Murakami A, Ohno K, Shiga K, Yoshida K, et al. A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature. 2002;415(6875):1047–51.
|
[41] |
Suzaki T, Williamson RE. Euglenoid movement in Euglena fusca: evidence for sliding between pellicular strips. Protoplasma. 1985;124:137–46.
|
[42] |
Killian JL, Ye F, Wang MD. Optical tweezers: a force to be reckoned with. Cell. 2018;175(6):1445–8.
|
[43] |
Kollipara PS, Chen Z, Zheng Y. Optical manipulation heats up: Present and future of optothermal manipulation. ACS Nano. 2023;17(8):7051–63.
|
[44] |
Wu MC. Optoelectronic tweezers. Nat Photonics. 2011;5(6):322–4.
|
[45] |
Zhao X, Zhao N, Shi Y, Xin H, Li B. Optical fiber tweezers: a versatile tool for optical trapping and manipulation. Micromachines. 2020;11(2): 114.
|
[46] |
Pan T, Lu D, Xin H, Li B. Biophotonic probes for bio-detection and imaging. Light Sci Appl. 2021;10(1):124.
|
[47] |
Zhong D, Du Z, Zhou M. Algae: a natural active material for biomedical applications. View. 2021;2(4): 20200189.
|