留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Photonic nanojet-regulated soft microalga-robot with controllable deformation and navigation capability

Photonic nanojet-regulated soft microalga-robot with controllable deformation and navigation capability[J]. PhotoniX. doi: 10.1186/s43074-024-00158-z
引用本文: Photonic nanojet-regulated soft microalga-robot with controllable deformation and navigation capability[J]. PhotoniX. doi: 10.1186/s43074-024-00158-z
Jianyun Xiong, Ziyi He, Guoshuai Zhu, Xing Li, Yang Shi, Ting Pan, Shuhan Zhong, He Wang, Zihao Su, Liliang Ye, Baojun Li, Hongbao Xin. Photonic nanojet-regulated soft microalga-robot with controllable deformation and navigation capability[J]. PhotoniX. doi: 10.1186/s43074-024-00158-z
Citation: Jianyun Xiong, Ziyi He, Guoshuai Zhu, Xing Li, Yang Shi, Ting Pan, Shuhan Zhong, He Wang, Zihao Su, Liliang Ye, Baojun Li, Hongbao Xin. Photonic nanojet-regulated soft microalga-robot with controllable deformation and navigation capability[J]. PhotoniX. doi: 10.1186/s43074-024-00158-z

Photonic nanojet-regulated soft microalga-robot with controllable deformation and navigation capability

doi: 10.1186/s43074-024-00158-z
基金项目: 

D Program of China (2023YFF0613700), Guangdong Basic and Applied Basic Research Foundation (2022B1515120012), Science and Technology Program of Guangzhou (202201010370).

This work was supported by the National Natural Science Foundation of China (62135005, 12374286, 12204196, and 32271405), the National Key R&

Photonic nanojet-regulated soft microalga-robot with controllable deformation and navigation capability

Funds: 

D Program of China (2023YFF0613700), Guangdong Basic and Applied Basic Research Foundation (2022B1515120012), Science and Technology Program of Guangzhou (202201010370).

This work was supported by the National Natural Science Foundation of China (62135005, 12374286, 12204196, and 32271405), the National Key R&

  • 摘要: Micro/nanorobots have shown great potential to execute different tasks in microenvironments due to their small size, high controllability and environmental adaptability. However, it is still challenging to precisely control the deformation and navigation of soft micro/nanorobots to better adapt to unstructured and complex surroundings. Here, we report a photonic nanojet (PNJ)-regulated soft microalga robot (saBOT) based on Euglena gracilis with controlled deformation and precise navigation capability. The deformability of the saBOT was precisely controlled by the highly focused light energy from a microlens-based PNJ bound to a tapered optical fiber probe (TFP), which can precisely stimulate the channelrhodopsin-2 (ChR2) in the photoreceptor of the microalga. This saBOT can be further precisely navigated toward different positions in complex and unstructured microenvironments by combining the deformability with the phototaxis ability of the microalga via the flexible manipulation of TFP. Notably, due to the ability of controllable deformation and precision navigation, the saBOT can travel across cell clusters for precision drug delivery toward a target cell. This PNJ-regulated saBOT holds great promise in executing different biomedical tasks in complex and unstructured microenvironments that cannot be reached by conventional tools and rigid microrobots.
      关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Chen Y, Zhao H, Mao J, Chirarattananon P, Helbling EF, Hyun NSP, et al. Controlled flight of a microrobot powered by soft artificial muscles. Nature. 2019;575(7782):324–9.
    [2] Medina-Sánchez M, Magdanz V, Guix M, Fomin VM, Schmidt OG. Swimming microrobots: Soft, reconfigurable, and smart. Adv Funct Mater. 2018;28(25):1707228.
    [3] Wang Z, Klingner A, Magdanz V, Misra S, Khalil IS. Soft bio-microrobots: toward biomedical applications. Adv Intell Syst. 2024;6(2):2300093.
    [4] Xin C, Jin D, Hu Y, Yang L, Li R, Wang L, et al. Environmentally adaptive shape-morphing microrobots for localized cancer cell treatment. ACS Nano. 2021;15(11):18048–59.
    [5] Pan T, Shi Y, Zhao N, Xiong J, Xiao Y, Xin H, et al. Bio-micromotor tweezers for noninvasive bio-cargo delivery and precise therapy. Adv Funct Mater. 2022;32(16):2111038.
    [6] Wang B, Chan KF, Yuan K, Wang Q, Xia X, Yang L, et al. Endoscopy-assisted magnetic navigation of biohybrid soft microrobots with rapid endoluminal delivery and imaging. Sci Rob. 2021;6(52):eabd2813.
    [7] Wu L, Yuan X, Tang Y, Wageh S, Al-Hartomy OA, Al-Sehemi AG, et al. MXene sensors based on optical and electrical sensing signals: from biological, chemical, and physical sensing to emerging intelligent and bionic devices. PhotoniX. 2023;4(1):15.
    [8] Bunea AI, Martella D, Nocentini S, Parmeggiani C, Taboryski R, Wiersma DS. Light-powered microrobots: challenges and opportunities for hard and soft responsive microswimmers. Adv Intell Syst. 2021;3(4):2000256.
    [9] Palagi S, Fischer P. Bioinspired microrobots. Nat Rev Mater. 2018;3(6):113–24.
    [10] Magdanz V, Stoychev G, Ionov L, Sanchez S, Schmidt OG. Stimuli-responsive microjets with reconfigurable shape. Angew Chem Int Ed Engl. 2014;126(10):2711–5.
    [11] Li R, Jin D, Pan D, Ji S, Xin C, Liu G, et al. Stimuli-responsive actuator fabricated by dynamic asymmetric femtosecond bessel beam for in situ particle and cell manipulation. ACS Nano. 2020;14(5):5233–42.
    [12] Kim H, Ahn SK, Mackie DM, Kwon J, Kim SH, Choi C, et al. Shape morphing smart 3D actuator materials for micro soft robot. Mater Today. 2020;41:243–69.
    [13] Yin C, Wei F, Zhan Z, Zheng J, Yao L, Yang W, et al. Untethered microgripper-the dexterous hand at microscale. Biomed Microdevices. 2019;21:1–18.
    [14] Li H, Go G, Ko SY, Park JO, Park S. Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery. Smart Mater Struct. 2016;25(2): 027001.
    [15] Wang B, Liu D, Liao Y, Huang Y, Ni M, Wang M, et al. Spatiotemporally actuated hydrogel by magnetic swarm nanorobotics. ACS Nano. 2022;16(12):20985–1001.
    [16] Pan Y, Lee LH, Yang Z, Hassan SU, Shum HC. Co-doping optimized hydrogel-elastomer micro-actuators for versatile biomimetic motions. Nanoscale. 2021;13(45):18967–76.
    [17] Xing J, Yin T, Li S, Xu T, Ma A, Chen Z, et al. Sequential magneto-actuated and optics-triggered biomicrorobots for targeted cancer therapy. Adv Funct Mater. 2021;31(11):2008262.
    [18] Sitti M, Wiersma DS. Pros and cons: Magnetic versus optical microrobots. Adv Mater. 2020;32(20): 1906766.
    [19] Hu X, Yasa IC, Ren Z, Goudu SR, Ceylan H, Hu W, et al. Magnetic soft micromachines made of linked microactuator networks. Sci Adv. 2021;7(23):eabe8436.
    [20] Maria-Hormigos R, Mayorga-Martinez CC, Pumera M. Soft magnetic microrobots for photoactive pollutant removal. Small Methods. 2023;7(1):2201014.
    [21] Fan X, Sun M, Sun L, Xie H. Ferrofluid droplets as liquid microrobots with multiple deformabilities. Adv Funct Mater. 2020;30(24): 2000138.
    [22] Dong X, Kheiri S, Lu Y, Xu Z, Zhen M, Liu X. Toward a living soft microrobot through optogenetic locomotion control of Caenorhabditis elegans. Sci Robot. 2021;6(55):eabe3950.
    [23] Xiong J, Li X, He Z, Shi Y, Pan T, Zhu G, et al. Light-controlled soft bio-microrobot. Light Sci Appl. 2024;13(1):55.
    [24] Ricotti L, Trimmer B, Feinberg AW, Raman R, Parker KK, Bashir R, et al. Biohybrid actuators for robotics: a review of devices actuated by living cells. Sci Robot. 2017;2(12):eaaq0495.
    [25] Kim Y, Parada GA, Liu S, Zhao X. Ferromagnetic soft continuum robots. Sci Robot. 2019;4(33):eaax7329.
    [26] Palagi S, Singh DP, Fischer P. Light-controlled micromotors and soft microrobots. Adv Opt Mater. 2019;7(16):1900370.
    [27] Van-Oosten CL, Bastiaansen CW, Broer DJ. Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat Mater. 2009;8(8):677–82.
    [28] Yu Y, Nakano M, Ikeda T. Directed bending of a polymer film by light. Nature. 2003;425(6954):145–145.
    [29] Xiong J, Shi Y, Pan T, Lu D, He Z, Wang D, et al. Wake-Riding Effect-Inspired Opto-Hydrodynamic Diatombot for Non-Invasive Trapping and Removal of Nano-Biothreats. Adv Sci. 2023;10(18):2301365.
    [30] Pang X, Lv JA, Zhu C, Qin L, Yu Y. Photodeformable azobenzene-containing liquid crystal polymers and soft actuators. Adv Mater. 2019;31(52):1904224.
    [31] Xin H, Zhao N, Wang Y, Zhao X, Pan T, Shi Y, et al. Optically controlled living micromotors for the manipulation and disruption of biological targets. Nano Lett. 2020;20(10):7177–85.
    [32] Wang Z, Guo W, Li L, Luk’Yanchuk B, Khan A, Liu Z, et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat Commun. 2011;2(1):218.
    [33] Li YC, Xin HB, Lei HX, Liu LL, Li YZ, Zhang Y, et al. Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet. Light Sci Appl. 2016;5(12): e16176.
    [34] Liang L, Teh DB, Dinh ND, Chen W, Chen Q, Wu Y, et al. Upconversion amplification through dielectric superlensing modulation. Nat Commun. 2019;10(1):1391.
    [35] Leander BS, Esson HJ, Breglia SA. Macroevolution of complex cytoskeletal systems in euglenids. BioEssays. 2007;29(10):987–1000.
    [36] Leander BS. Did trypanosomatid parasites have photosynthetic ancestors? Trends Microbiol. 2004;12(6):251–8.
    [37] Porter ME, Sale WS. The 9+ 2 axoneme anchors multiple inner arm dyneins and a network of kinases and phosphatases that control motility. J Cell Biol. 2000;151(5):F37–42.
    [38] Ginger ML, Portman N, McKean PG. Swimming with protists: perception, motility and flagellum assembly. Nat Rev Microbiol. 2008;6(11):838–50.
    [39] Mitchell DR. Orientation of the central pair complex during flagellar bend formation in Chlamydomonas. Cell Motil Cytoskeleton. 2003;56(2):120–9.
    [40] Iseki M, Matsunaga S, Murakami A, Ohno K, Shiga K, Yoshida K, et al. A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature. 2002;415(6875):1047–51.
    [41] Suzaki T, Williamson RE. Euglenoid movement in Euglena fusca: evidence for sliding between pellicular strips. Protoplasma. 1985;124:137–46.
    [42] Killian JL, Ye F, Wang MD. Optical tweezers: a force to be reckoned with. Cell. 2018;175(6):1445–8.
    [43] Kollipara PS, Chen Z, Zheng Y. Optical manipulation heats up: Present and future of optothermal manipulation. ACS Nano. 2023;17(8):7051–63.
    [44] Wu MC. Optoelectronic tweezers. Nat Photonics. 2011;5(6):322–4.
    [45] Zhao X, Zhao N, Shi Y, Xin H, Li B. Optical fiber tweezers: a versatile tool for optical trapping and manipulation. Micromachines. 2020;11(2): 114.
    [46] Pan T, Lu D, Xin H, Li B. Biophotonic probes for bio-detection and imaging. Light Sci Appl. 2021;10(1):124.
    [47] Zhong D, Du Z, Zhou M. Algae: a natural active material for biomedical applications. View. 2021;2(4): 20200189.
  • 加载中
计量
  • 文章访问数:  30
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-18
  • 录用日期:  2024-12-17
  • 修回日期:  2024-11-05
  • 网络出版日期:  2024-12-30

目录

    /

    返回文章
    返回