[1] |
Yang S, Xu J, Guo M, et al. Progress on very/ultra low frequency mechanical antennas. ES Materials & Manufacturing. 2021;16:1–12.
|
[2] |
Chen H, Liang X, Dong C, et al. Ultra-compact mechanical antennas. J Appl Phys Lett. 2020;117(17):170501. https://doi.org/10.1063/5.0025362.
|
[3] |
Miron DB. Small antenna design. Elsevier; 2006.
|
[4] |
Fawole OC, Tabib-Azar M. An electromechanically modulated permanent magnet antenna for wireless communication in harsh electromagnetic environments[J]. IEEE Trans Antennas Propag. 2017;65(12):6927–36.
|
[5] |
Guo M, Wen X, Yang S, et al. Extremely-low frequency mechanical antenna based on vibrating permanent magnet[J]. Engineered Science. 2021;16:387–92.
|
[6] |
Cui Y, Wu M, Li Z, et al. A miniaturized mechanical antenna based on FEP/THV unipolar electrets for extremely low frequency transmission[J]. Microsyst Nanoeng. 2022;8(1):58.
|
[7] |
Wang C, Cui Y, Wei M, Mechanically-Rotating Electret ULF, Antenna Transmitter VLF. IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. Atlanta, GA, USA. 2019;2019:1383–4.
|
[8] |
Kemp MA, Franzi M, Haase A, et al. A high Q piezoelectric resonator as a portable VLF transmitter[J]. Nat Commun. 2019;10(1):1715.
|
[9] |
Xu J, Cao J, Guo M, et al. Metamaterial mechanical antenna for very low frequency wireless communication[J]. Adv Composites Hybrid Mater. 2021;4:761–7.
|
[10] |
Hassanien AE, Breen M, Li MH, et al. Acoustically driven electromagnetic radiating elements[J]. Sci Rep. 2020;10(1):17006.
|
[11] |
Cao J, Yao H, Pang Y, et al. Dual-band piezoelectric artificial structure for very low frequency mechanical antenna[J]. Adv Composites Hybrid Mater. 2022;5(1):410–8.
|
[12] |
Dong C, He Y, Li M, et al. A portable very low frequency (VLF) communication system based on acoustically actuated magnetoelectric antennas[J]. IEEE Antennas Wirel Propag Lett. 2020;19(3):398–402.
|
[13] |
Niu Y, Ren H. Transceiving signals by mechanical resonance: a miniaturized standalone low frequency (lf) magnetoelectric mechanical antenna pair with integrated DC magnetic bias[J]. IEEE Sens J. 2022;22(14):14008–17.
|
[14] |
Jahns R, Greve H, Woltermann E, et al. Sensitivity enhancement of magnetoelectric sensors through frequency-conversion[J]. Sens Actuators, A. 2012;183:16–21.
|
[15] |
Zhai JY, Dong S, Xing ZP, et al. Tunable magnetoelectric resonance devices[J]. J Phys D Appl Phys. 2009;42(12):122001.
|
[16] |
Park C S, Avirovik D, Bichurin M I, et al. Tunable magnetoelectric response of dimensionally gradient laminate composites. Appl Phys Lett. 2012;100(21):55. https://doi.org/10.1063/1.4720095.
|
[17] |
Hu L, Zhang Q, Wu H, et al. A very low frequency (VLF) antenna based on clamped bending-mode structure magnetoelectric laminates[J]. J Phys: Condens Matter. 2022;34(41):414002.
|
[18] |
Niu Y, Ren H. A miniaturized low frequency (LF) magnetoelectric receiving antenna with an integrated DC magnetic bias. Appl Phys Lett. 2021;118(26):264104. https://doi.org/10.1063/5.0048292.
|
[19] |
Broadway DA, Wood JDA, Hall LT, et al. Anticrossing spin dynamics of diamond nitrogen-vacancy centers and all-optical low-frequency magnetometry. Phys Rev Appl. 2016;6(6):064001.
|
[20] |
Michl J, Steiner J, Denisenko A, et al. Robust and accurate electric field sensing with solid state spin ensembles[J]. Nano Lett. 2019;19(8):4904–10.
|
[21] |
Ranjit G, Cunningham M, Casey K, et al. Zeptonewton force sensing with nanospheres in an optical lattice[J]. Phys Rev A. 2016;93(5):053801.
|
[22] |
Timberlake C, Toroš M, Hempston D, et al. Static force characterization with Fano anti-resonance in levitated optomechanics[J]. Appl Phys Lett. 2019;114(2):023104.
|
[23] |
Blakemore CP, Rider AD, Roy S, et al. Three-dimensional force-field microscopy with optically levitated microspheres[J]. Phys Rev A. 2019;99(2):023816.
|
[24] |
Liang T, Zhu S, He P, et al. Yoctonewton force detection based on optically levitated oscillator[J]. Fundamental Research. 2023;3(1):57–62.
|
[25] |
Kuhn S, Stickler BA, Kosloff A, et al. Optically driven ultra-stable nanomechanical rotor[J]. Nat Commun. 2017;8(1):1670.
|
[26] |
Ahn J, Xu Z, Bang J, et al. Ultrasensitive torque detection with an optically levitated nanorotor[J]. Nat Nanotechnol. 2020;15(2):89–93.
|
[27] |
Ahn J, Xu Z, Bang J, et al. Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor[J]. Phys Rev Lett. 2018;121(3):033603.
|
[28] |
Monteiro F, Ghosh S, Fine AG, et al. Optical levitation of 10-ng spheres with nano-g acceleration sensitivity[J]. Phys Rev A. 2017;96(6):063841.
|
[29] |
Monteiro F, Li W, Afek G, et al. Force and acceleration sensing with optically levitated nanogram masses at microkelvin temperatures[J]. Phys Rev A. 2020;101(5):053835.
|
[30] |
Ricci F, Cuairan MT, Conangla GP, et al. Accurate mass measurement of a levitated nanomechanical resonator for precision force-sensing[J]. Nano Lett. 2019;19(10):6711–5.
|
[31] |
Zheng Y, Zhou LM, Dong Y, et al. Robust optical-levitation-based metrology of nanoparticle’s position and mass[J]. Phys Rev Lett. 2020;124(22):223603.
|
[32] |
Ricci F, Cuairan M T, Schell A W, et al. A chemical nanoreactor based on a levitated nanoparticle in vacuum[J]. ACS nano. 2022;16(6):8677-83. https://doi.org/10.1021/acsnano.2c01693.
|
[33] |
Zhu S, Fu Z, Gao X, et al. Nanoscale electric field sensing using a levitated nano-resonator with net charge[J]. Photon Res. 2023;11(2):279–89.
|
[34] |
Harada Y, Asakura T. Radiation forces on a dielectric sphere in the Rayleigh scattering regime[J]. Optics Commun. 1996;124(5–6):529–41.
|
[35] |
Meyer DH, Castillo ZA, Cox KC, et al. Assessment of Rydberg atoms for wideband electric field sensing. J Phys B: At Mol Opt Phys. 2020;53(3):034001.
|
[36] |
Gieseler J, Deutsch B, Quidant R, et al. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle[J]. Phys Rev Lett. 2012;109(10):103603.
|
[37] |
Yan J, Yu X, Han ZV, et al. On-demand assembly of optically levitated nanoparticle arrays in vacuum[J]. Photon Res. 2023;11(4):600–8.
|
[38] |
Rieser J, Ciampini MA, Rudolph H, et al. Tunable light-induced dipole-dipole interaction between optically levitated nanoparticles[J]. Science. 2022;377(6609):987–90.
|
[39] |
Burch HC, Garraud A, Mitchell MF, Moore RC, Arnold DP. Experimental Generation of ELF Radio Signals Using a Rotating Magnet. IEEE Trans Antennas Propag. 2018;66(11):6265–72.
|
[40] |
Séran H C, Fergeau P. An optimized low-frequency three-axis search coil magnetometer for space research. Rev Sci Instruments. 2005;76(4):57-65. https://doi.org/10.1063/1.1884026.
|
[41] |
Jimenez E, Quintana G, Mena P, et al. Investigation on radio wave propagation in shallow seawater: Simulations and measurements[C]//2016 IEEE third underwater communications and networking conference (UComms). IEEE, 2016: 1–5.
|
[42] |
Mena-Rodríguez P, Dorta-Naranjo P, Quintana G, et al. Experimental testbed for seawater channel characterization[C]//2016 IEEE Third Underwater Communications and Networking Conference (UComms). IEEE, 2016: 1–5.
|
[43] |
Cella U M, Johnstone R, Shuley N. Electromagnetic wave wireless communication in shallow water coastal environment: theoretical analysis and experimental results[C]//Proceedings of the 4th International Workshop on Underwater Networks. 2009: 1–8.
|
[44] |
Sase R, Ishii N. An attempt of underwater position estimation in pseudo-scale model using cross-dipole array[C]//2021 International Symposium on Antennas and Propagation (ISAP). IEEE, 2021: 1–2.
|
[45] |
Mn SP, Tok RU, Fereidoony F, et al. Magnetic pendulum arrays for efficient ULF transmission[J]. Sci Rep. 2019;9(1):13220.
|
[46] |
Rezaei H, Khilkevich V, Yong S, et al. Mechanical magnetic field generator for communication in the ULF range[J]. IEEE Trans Antennas Propag. 2019;68(3):2332–9.
|
[47] |
Fereidoony F, Nagaraja SPM, Santos JPD, et al. Efficient ULF transmission utilizing stacked magnetic pendulum array[J]. IEEE Trans Antennas Propag. 2021;70(1):585–97.
|
[48] |
Sun F, Zhang F, Ma X, et al. Rotating Permanent Magnet Antenna Array Based on Near-Field Polarization Modulation[J]. IEEE Antennas Wirel Propag Lett. 2022;21(6):1193–7.
|
[49] |
Yang S, Geng J, Zhou H, et al. Long-range EM communication underwater with ultracompact ELF magneto-mechanical antenna[J]. IEEE Trans Antennas Propag. 2022;71(3):2082–97.
|
[50] |
FU Yifan, XU Guokai, ZHU Xiangwei, XIAO Shaoqiu, ZHANG Jinghao, ZHONG Jiuping, LI Wanqing, LI Junru, WANG Yuhang, WANG Ziye, LI Du. Research on Acoustically Excited Miniaturized Antenna Technology Based on Piezoelectric Crystal in Low-Frequency. J Electron Info Technol. 2023;45(11):3935–3944.
|
[51] |
Zhu M, Chen Y, Bao T, et al. A Fully Packed Magnetoelectric VLF Communication System Based on Self-Designed Circuits and Wireless Transmission into a Metallic Enclosure[J]. IEEE Transactions on Antennas and Propagation. 2023;71(10):8218-25.
|
[52] |
Hebestreit E, Frimmer M, Reimann R, Dellago C, Ricci F, Novotny L. Calibration and energy measurement of optically levitated nanoparticle sensors. Rev Sci Instrum. 2018;89(3):033111.
|
[53] |
Kawasaki A, Fieguth A, Priel N, Blakemore CP, Martin D, Gratta G. High sensitivity, levitated microsphere apparatus for short-distance force measurements. Rev Sci Instrum. 2020;91(8):083201.
|
[54] |
Fu Z, Zhu S, Dong Y, et al. Force detection sensitivity spectrum calibration of levitated nanomechanical sensor using harmonic coulomb force[J]. Opt Lasers Eng. 2022;152:106957.
|
[55] |
Frimmer M, Luszcz K, Ferreiro S, et al. Controlling the net charge on a nanoparticle optically levitated in vacuum[J]. Phys Rev A. 2017;95(6):061801.
|
[56] |
Blakemore CP, Fieguth A, Kawasaki A, et al. Search for non-Newtonian interactions at micrometer scale with a levitated test mass[J]. Physical Review D. 2021;104(6):L061101.
|
[57] |
Němeček Z, Pavlů J, Šafránková J, et al. Lunar dust grain charging by electron impact: Dependence of the surface potential on the grain size[J]. Astrophys J. 2011;738(1):14.
|
[58] |
Gan H, Zhang X, Li X, et al. Experiments on the Electrostatic Transport of Charged Anorthite Particles under Electron Beam Irradiation[J]. Astrophys J. 2022;930(1):42.
|
[59] |
Cox KC, Meyer DH, Fatemi FK, et al. Quantum-limited atomic receiver in the electrically small regime[J]. Phys Rev Lett. 2018;121(11):110502.
|
[60] |
Jing M, Hu Y, Ma J, et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nat Phys. 2020;16(9):911–5.
|
[61] |
Sedlacek JA, Schwettmann A, Kübler H, et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nat Phys. 2012;8(11):819–24.
|
[62] |
Liu B, Zhang L, Liu Z, et al. Electric field measurement and application based on Rydberg atoms[J]. Electromagnet Sci. 2023;1(2):1–16.
|
[63] |
Gonzalez-Ballestero C, Aspelmeyer M, Novotny L, et al. Levitodynamics: Levitation and control of microscopic objects in vacuum. Science. 2021;374(6564):eabg3027.
|
[64] |
Plidschun M, Ren H, Kim J, et al. Ultrahigh numerical aperture meta-fibre for flexible optical trapping. Light: Sci App. 2021;10(1):57.
|
[65] |
Adamiak K. Rate of charging of spherical particles by monopolar ions in electric fields[J]. IEEE Trans Ind Appl. 2002;38(4):1001–8.
|
[66] |
Li T. Fundamental tests of physics with optically trapped microspheres[M]. Springer Science & Business Media; 2013.
|
[67] |
Proakis JR. Digital Communication. USA: McGraw-Hill, New York; 2003.
|