留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Light-propelled photocatalytic evaporator for robotic solar-driven water purification

Dong-Dong Han, Qiang Wang, Zhao-Di Chen, Lei Wang, Zhiyong Chang, Sheng-Yi Xie, Xian-Bin Li, Wei Zhang, Yong-Lai Zhang. Light-propelled photocatalytic evaporator for robotic solar-driven water purification[J]. PhotoniX. doi: 10.1186/s43074-025-00169-4
Citation: Dong-Dong Han, Qiang Wang, Zhao-Di Chen, Lei Wang, Zhiyong Chang, Sheng-Yi Xie, Xian-Bin Li, Wei Zhang, Yong-Lai Zhang. Light-propelled photocatalytic evaporator for robotic solar-driven water purification[J]. PhotoniX. doi: 10.1186/s43074-025-00169-4

doi: 10.1186/s43074-025-00169-4

Light-propelled photocatalytic evaporator for robotic solar-driven water purification

Funds: This work was supported in part by the National Key Research and Development Program of China under Grant No. 2022YFB4600400; the National Natural Science Foundation of China under Grant Nos. 62275100 and T2325014; the Natural Science Foundation of Jilin Province under Grant No. 20230101350JC and YDZJ202402001CXJD; the National Ten Thousand Talent Program for Young Top-notch Talents; the Fundamental Research Funds for the Central Universities.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Bosson JB, Huss M, Cauvy-Fraunié S, Clément JC, Costes G, Fischer M, Poulenard J, Arthaud F. Future emergence of new ecosystems caused by glacial retreat. Nature. 2023;620:562–9.
    [2] Jiang M, Jing C, Lei C, Han X, Wu Y, Ling S, Zhang Y, Li Q, Yu H, Liu S, Li J, Chen W, Yu G. A bio-based nanofibre hydrogel filter for sustainable water purification. Nat Sustain. 2024;7:168–78.
    [3] Xu N, Li J, Finnerty C, Song Y, Zhou L, Zhu B, Wang P, Mi B, Zhu J. Going beyond efficiency for solar evaporation. Nat Water. 2023;1:494–501.
    [4] Zhang PP, Wang HY, Wang J, Ji ZY, Qu LT. Boosting the viable water harvesting in solar vapor generation: from interfacial engineering to devices design. Adv Mater. 2024;36:2303976.
    [5] Wang X, Lin Z, Gao J, Xu Z, Li X, Xu N, Li J, Song Y, Fu H, Zhao W, Wang S, Zhu B, Wang R, Zhu J. Solar steam-driven membrane filtration for high flux water purification. Nat Water. 2023;1:391–8.
    [6] Li T, Yan T, Wang P, Xu J, Huo X, Bai Z, Shi W, Yu G, Wang R. Scalable and efficient solar-driven atmospheric water harvesting enabled by bidirectionally aligned and hierarchically structured nanocomposites. Nat Water. 2023;1:971–81.
    [7] Huang JB, Hu B, Meng JS, Meng T, Liu WX, Guan YT, Jin L, Zhang XC. Highly efficient sustainable strategies toward carbon-neutral energy production. Energy Environ Sci. 2024;17:1007–45.
    [8] Yan K, Zhao F, Pan L, Jiang Y, Shi Y, Yu G. High-throughput clean-up of viscous oil spills enabled by a gel-coated mesh filter. Nat Sustain. 2023;6:1654–62.
    [9] Song Y, Xu N, Liu G, Qi H, Zhao W, Zhu B, Zhou L, Zhu J. High-yield solar-driven atmospheric water harvesting of metal–organic-framework-derived nanoporous carbon with fast-diffusion water channels. Nat Nanotechnol. 2022;17:857–63.
    [10] Zhu KX, Liao QH, Hao XZ, Yao HZ, Bai JX, Guang TL, Lin TY, Cheng HH, Qu LT. Low-grade waste heat enables over 80 L m-2 h-1 interfacial steam generation based on 3D superhydrophilic foam. Adv Mater. 2023;35:2211932.
    [11] Zhu Z, Zheng H, Kong H, Ma X, Xiong J. Passive solar desalination towards high efficiency and salt rejection via a reverse-evaporating water layer of millimetre-scale thickness. Nat Water. 2023;1:790–9.
    [12] Zhou X, Zhao F, Guo Y, Rosenberger B, Yu G. Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci Adv. 2019;5:eaaw5484.
    [13] Su RD, Zhu YF, Gao BY, Li Q. Progress on mechanism and efficacy of heterogeneous photocatalysis coupled oxidant activation as an advanced oxidation process for water decontamination. Water Res. 2024;251: 121119.
    [14] Yao P, Gong H, Wu ZY, Fu H, Li B, Zhu B, Ji J, Wang X, Xu N, Tang C, Zhang H, Zhu J. Greener and higher conversion of esterification via interfacial photothermal catalysis. Nat Sustain. 2022;5:348–56.
    [15] Elimelech M, Phillip WA. The future of seawater desalination: energy, technology, and the environment. Science. 2011;333:712–7.
    [16] Santoro S, Avci AH, Politano A, Curcio E. The advent of thermoplasmonic membrane distillation. Chem Soc Rev. 2022;51:6087–125.
    [17] Parvulescu VI, Epron F, Garcia H, Granger P. Recent progress and prospects in catalytic water treatment. Chem Rev. 2022;122:2981–3121.
    [18] Chen C, Kuang Y, Hu L. Challenges and opportunities for solar evaporation. Joule. 2019;3:683–718.
    [19] Hu YJ, Yao HZ, Liao QH, Lin TY, Cheng HH, Qu LT. The promising solar-powered water purification based on graphene functional architectures. EcoMat. 2022;4: e12205.
    [20] Jun YS, Wu X, Ghim D, Jiang Q, Cao S, Singamaneni S. Photothermal membrane water treatment for two worlds. Acc Chem Res. 2019;52:1215–25.
    [21] Han DD, Chen ZD, Li JC, Mao JW, Jiao ZZ, Wang W, Zhang W, Zhang YL, Sun H-B. Airflow enhanced solar evaporation based on janus graphene membranes with stable interfacial floatability. ACS Appl Mater Interfaces. 2020;12:25435–43.
    [22] Cao SJ, Thomas A, Li CX. Emerging materials for interfacial solar-driven water purification. Angew Chem Int Ed. 2023;62: e202214391.
    [23] Geng HY, Xu Q, Wu MM, Ma HY, Zhang PP, Gao TT, Qu LT, Ma TB, Li C. Plant leaves inspired sunlight-driven purifier for high-efficiency clean water production. Nat Commun. 2019;10:1512.
    [24] Zhou L, Li X, Ni GW, Zhu S, Zhu J. The revival of thermal utilization from the Sun: interfacial solar vapor generation. Natl Sci Rev. 2019;6:562–78.
    [25] Wu X, Lu Y, Ren X, Wu P, Chu D, Yang X, Xu H. Interfacial solar evaporation: from fundamental research to applications. Adv Mater. 2024;36: 2313090.
    [26] Zhang B, Wong PW, Guo J, Zhou Y, Wang Y, Sun J, Jiang M, Wang Z, An AK. Transforming Ti3C2Tx MXene’s intrinsic hydrophilicity into superhydrophobicity for efficient photothermal membrane desalination. Nat Commun. 2022;13:3315.
    [27] You R, Liu YQ, Hao YL, Han DD, Zhang YL, You Z. Laser fabrication of graphene-based flexible electronics. Adv Mater. 2020;32:1901981.
    [28] Dang C, Cao Y, Nie H, Lang W, Zhang J, Xu G, Zhu M. Structure integration and architecture of solar-driven interfacial desalination from miniaturization designs to industrial applications. Nat Water. 2024;2:115–26.
    [29] Lu Y, Yang G, Wang S, Zhang Y, Jian Y, He L, Yu T, Luo H, Kong D, Xianyu Y, Liang B, Liu T, Ouyang X, Yu J, Hu X, Yang H, Gu Z, Huang W, Xu K. Stretchable graphene–hydrogel interfaces for wearable and implantable bioelectronics. Nat Electron. 2024;7:51–65.
    [30] Urso M, Ussia M, Pumera M. Smart micro- and nanorobots for water purification. Nat Rev Bioeng. 2023;1:236–51.
    [31] He YC, Yin K, Wang LX, Wu TN, Deng QW, Dou YP, Arnusch CJ. Magnetically actuated superhydrophilic robot sphere fabricated by a femtosecond laser for droplet steering. Nano Lett. 2023;23:4947–55.
    [32] Kim HJ, Kim B, Auh Y, Kim E. Conjugated organic photothermal films for spatiotemporal thermal engineering. Adv Mater. 2021;33:2005940.
    [33] Kim B, Cho C, Han M, Attias AJ, Kim E. Giant photo-magneto-thermoelectric effect of end-on oriented PEDOT grown from self-assembled 3D tectons. Adv Funct Mater. 2021;31:2105297.
    [34] Qian X, Zhao Y, Alsaid Y, Wang X, Hua M, Galy T, Gopalakrishna H, Yang Y, Cui J, Liu N, Marszewski M, Pilon L, Jiang H, He X. Artificial phototropism for omnidirectional tracking and harvesting of light. Nat Nanotechnol. 2019;14:1048–55.
    [35] Liang H, Mu Y, Yin M, He PP, Guo W. Solar-powered simultaneous highly efficient seawater desalination and highly specific target extraction with smart DNA hydrogels. Sci Adv. 2023;9: eadj1677.
    [36] Vaghasiya JV, Mayorga-Martinez CC, Matějková S, Pumera M. Pick up and dispose of pollutants from water via temperature-responsive micellar copolymers on magnetite nanorobots. Nat Commun. 2022;13:1026.
    [37] Urso M, Ussia M, Peng X, Oral CM, Pumera M. Reconfigurable self-assembly of photocatalytic magnetic microrobots for water purification. Nat Commun. 2023;14:6969.
    [38] Yang PY, Yin K, Song XH, Wang LX, Deng QW, Pei JQ, He YC, Arnusch CJ. Airflow triggered water film self-sculpturing on femtosecond laser-induced heterogeneously wetted micro/nanostructured surfaces. Nano Lett. 2024;24:3133–41.
    [39] Wu TN, Yin K, Pei JQ, He YC, Duan JA, Arnusch CJ. Femtosecond laser-textured superhydrophilic coral-like structures spread AgNWs enable strong thermal camouflage and anti-counterfeiting. Appl Phys Lett. 2024;124: 161602.
    [40] Wang LX, Yin K, Deng QW, Huang QQ, Arnusch CJ. Multiscale hybrid-structured femtosecond laser-induced graphene with outstanding photo-electro-thermal effects for all-day anti-icing/deicing. Carbon. 2024;219: 118824.
    [41] He YC, Yin K, Wang LX, Wu TN, Chen Y, Arnusch CJ. Femtosecond laser structured black superhydrophobic cork for efficient solar-driven cleanup of crude oil. Appl Phys Lett. 2024;124: 171601.
    [42] Wang L, Yang Y, Wang J, Liu W, Liu Y, Gong J, Liu G, Wang X, Cheng Z, Zhang X. Excellent catalytic performance toward the hydrogen evolution reaction in topological semimetals. EcoMat. 2023;5: e12316.
    [43] Wei J, Xu C, Dong B, Qiu CW, Lee C. Mid-infrared semimetal polarization detectors with configurable polarity transition. Nat Photonics. 2021;15:614–21.
    [44] Liu J, Xia F, Xiao D, García de Abajo FJ, Sun D. Semimetals for high-performance photodetection. Nat Mater. 2020;19:830–7.
    [45] Ma JN, Ma B, Wang ZX, Song P, Han DD, Zhang Y-L. Multiresponsive MXene actuators with asymmetric quantum-confined superfluidic structures. Adv Funct Mater. 2024;34:2308317.
    [46] Zhang YL, Liu YQ, Han DD, Ma JN, Wang D, Li XB, Sun HB. Quantum-confined-superfluidics-enabled moisture actuation based on unilaterally structured graphene oxide papers. Adv Mater. 2019;31:1901585.
    [47] Nair RR, Wu HA, Jayaram PN, Grigorieva IV, Geim AK. Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science. 2012;335:442–4.
    [48] Zhou T, Wu C, Wang Y, Tomsia AP, Li M, Saiz E, Fang S, Baughman RH, Jiang L, Cheng Q. Super-tough MXene-functionalized graphene sheets. Nat Commun. 2020;11:2077.
    [49] Yang J, Li M, Fang S, Wang Y, He H, Wang C, Zhang Z, Yuan B, Jiang L, Baughman RH, Cheng Q. Water-induced strong isotropic MXene-bridged graphene sheets for electrochemical energy storage. Science. 2024;383:771–7.
    [50] Li R, Dong Y, Qian F, Xie Y, Chen X, Zhang Q, Yue Z, Gu M. CsPbBr 3/graphene nanowall artificial optoelectronic synapses for controllable perceptual learning. PhotoniX. 2023;4:4.
    [51] Wu L, Yuan X, Tang Y, Wageh S, Al-Hartomy OA, Al-Sehemi AG, Yang J, Xiang Y, Zhang H, Qin Y. MXene sensors based on optical and electrical sensing signals: from biological, chemical, and physical sensing to emerging intelligent and bionic devices. PhotoniX. 2023;4:15.
    [52] Wang Y, Wang L, Wang HY, Chen QD, Sun HB. Ultrafast spectroscopic study of insulator–semiconductor–semimetal transitions in graphene oxide and its reduced derivatives. J Phys Chem C. 2019;123:22550–5.
计量
  • 文章访问数:  12
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-23
  • 录用日期:  2025-03-20
  • 修回日期:  2025-02-20
  • 网络出版日期:  2025-04-09

目录

    /

    返回文章
    返回