留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Conversion of 2D picture to color 3D holography using end-to-end convolutional neural network

Chenliang Chang, Chenzhou Zhao, Bo Dai, Qi Wang, Jun Xia, Songlin Zhuang, Dawei Zhang. Conversion of 2D picture to color 3D holography using end-to-end convolutional neural network[J]. PhotoniX. doi: 10.1186/s43074-025-00186-3
Citation: Chenliang Chang, Chenzhou Zhao, Bo Dai, Qi Wang, Jun Xia, Songlin Zhuang, Dawei Zhang. Conversion of 2D picture to color 3D holography using end-to-end convolutional neural network[J]. PhotoniX. doi: 10.1186/s43074-025-00186-3

doi: 10.1186/s43074-025-00186-3

Conversion of 2D picture to color 3D holography using end-to-end convolutional neural network

Funds: This work is supported by Science and Technology Commission of Shanghai Municipality (24511106500); Youth Innovation Promotion Association, Chinese Academy of Sciences (2022232); National Natural Science Foundation of China (62075040); National Key Research and Development Program of China (2021YFF0701100).
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Blinder D, Birnbaum T, Ito T, Shimobaba T. The state-of-the-art in computer generated holography for 3D display. Light Adv Manuf. 2022;3:1.
    [2] Shi L, Ryu D, Matusik W. Ergonomic-Centric Holography: Optimizing Realism, Immersion, and Comfort for Holographic Display. Laser Photonics Rev. 2024;18:2300651.
    [3] Pi D, Liu J, Wang Y. Review of computer-generated hologram algorithms for color dynamic holographic three-dimensional display. Light Sci Appl. 2022;11:231.
    [4] Chang C, et al. Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective. Optica. 2020;7:1563–78.
    [5] Maimone A, Georgiou A, Kollin JS. Holographic near-eye displays for virtual and augmented reality. ACM Trans Graph. 2017;36:1–16.
    [6] Jiao SM, Zhuang ZY, Zou WB. Fast computer generated hologram calculation with a mini look-up table incorporated with radial symmetric interpolation. Opt Express. 2017;25:112–23.
    [7] Tsang PWM, Poon TC, Wu YM. Review of fast methods for point-based computer-generated holography. Photonics Res. 2018;6:837–46.
    [8] Gilles A, Gioia P. Real-time layer-based computer-generated hologram calculation for the Fourier transform optical system. Appl Opt. 2018;57:8508–17.
    [9] Zhao Y, et al. Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method. Opt Express. 2015;23:25440–9.
    [10] Chen JS, Chu DP. Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications. Opt Express. 2015;23:18143–55.
    [11] Zhang H, Cao L, Jin G. Computer-generated hologram with occlusion effect using layer-based processing. Appl Opt. 2017;56:F138–43.
    [12] Makey G, et al. Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors. Nat Photon. 2019;13:251–6.
    [13] Zhang YP, et al. Fast generation of full analytical polygon-based computer-generated holograms. Opt Express. 2018;26:19206–24.
    [14] Wang F, et al. Acceleration of polygon-based computer-generated holograms using look-up tables and reduction of the table size via principal component analysis. Opt Express. 2021;29:35442–55.
    [15] Ding S, Cao S, Zheng YF, Ewing RL. From image pair to a computer generated hologram for a real-world scene. Appl Opt. 2016;55:7583–92.
    [16] Lucente ME. Interactive computation of holograms using a look-up table. J Electron Imaging. 1993;2:28.
    [17] Kim SC, Kim ES. Effective generation of digital holograms of three-dimensional objects using a novel look-up table method. Appl Opt. 2008;47:D55–62.
    [18] Lucente M. Interactive three-dimensional holographic displays: seeing the future in depth. Comput Graph. 1997;31:63–7.
    [19] Shimobaba T, Masuda N, Ito T. Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane. Opt Lett. 2009;34:3133–5.
    [20] Shimobaba T, et al. Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display. Opt Express. 2010;18:19504–9.
    [21] Symeonidou A, Blinder D, Munteanu A, Schelkens P. Computer-generated holograms by multiple wavefront recording plane method with occlusion culling. Opt Express. 2015;23:22149–61.
    [22] Arai D, et al. Acceleration of computer-generated holograms using tilted wavefront recording plane method. Opt Express. 2015;23:1740–7.
    [23] Chang C, et al. From picture to 3D hologram: end-to-end learning of real-time 3D photorealistic hologram generation from 2D image input. Opt Lett. 2023;48:851–4.
    [24] Shi L, Li B, Kim C, Kellnhofer P, Matusik W. Towards real-time photorealistic 3D holography with deep neural networks. Nature. 2021;591:234–9.
    [25] Peng Y, Choi S, Padmanaban N, Wetzstein G. Neural holography with camera-in-the-loop training. Acm T Graphic. 2020;39:1–14.
    [26] Choi S, Gopakumar M, Peng Y, Kim J, Wetzstein G. Neural 3D holography: learning accurate wave propagation models for 3D holographic virtual and augmented reality displays. Acm T Graphic. 2021;40:1–12.
    [27] Lee J, et al. Deep neural network for multi-depth hologram generation and its training strategy. Opt Express. 2020;28:27137–54.
    [28] Horisaki R, Nishizaki Y, Kitaguchi K, Saito M, Tanida J. Three-dimensional deeply generated holography. Appl Opt. 2021;60:A323–8.
    [29] Zheng H, Hu J, Zhou C, Wang X. Computing 3D Phase-Type Holograms Based on Deep Learning Method. Photonics. 2021;8:280.
    [30] Liu K, Wu J, He Z, Cao L. 4K-DMDNet: diffraction model-driven network for 4K computer-generated holography. Opto-electron Adv. 2023;6:220135–213.
    [31] Shui X, et al. Diffraction model-informed neural network for unsupervised layer-based computer-generated holography. Opt Express. 2022;30:44814–26.
    [32] Jin Z, et al. Vision transformer empowered physics-driven deep learning for omnidirectional three- dimensional holography. Opt Express. 2024;32:14394–404.
    [33] Shi L, Li B, Matusik W. End-to-end learning of 3D phase-only holograms for holographic display. Light Sci Appl. 2022;11:247.
    [34] Marrugo AG, Gao F, Zhang S. State-of-the-art active optical techniques for three-dimensional surface metrology: a review [Invited]. J Opt Soc Am A. 2020;37:B60–77.
    [35] Wang D, et al. Holographic capture and projection system of real object based on tunable zoom lens. PhotoniX. 2020;1:6.
    [36] Chang C, et al. Deep-learning-based computer-generated hologram from a stereo image pair. Opt Lett. 2022;47:1482–5.
    [37] Ishii Y, et al. Multi-depth hologram generation from two-dimensional images by deep learning. Opt Lasers Eng. 2023;170:0143–8166.
    [38] Liu N, et al. DGE-CNN: 2D-to-3D holographic display based on a depth gradient extracting module and ZCNN network. Opt Express. 2023;31:23867–76.
    [39] Yan X, et al. Generation of Multiple-Depth 3D Computer-Generated Holograms from 2D-Image-Datasets Trained CNN. Adv Sci. 2025;12:2198–3844.
    [40] Ranftl R, Bochkovskiy A, Koltun V. Vision Transformers for Dense Prediction. arXiv. 2021;arXiv:2103.13413. http://arxiv.org/abs/2103.13413.
    [41] Lin TY. et al. Microsoft COCO: Common Objects in Context. In Proc ECCV. 2014;740.
    [42] Zhou B. et al. Scene Parsing through ADE20K Dataset. In Proc CVPR. 2017;631–641.
    [43] Chen W, Fu Z, Yang D, Deng J. Single-Image Depth Perception in the Wild. 2016;arXiv:1604.03901 http://arxiv.org/abs/1604.03901
    [44] Vasiljevic I. et al. DIODE: A Dense Indoor and Outdoor DEpth Dataset. 2019;arXiv:1908.00463. http://arxiv.org/abs/1908.00463.
    [45] Saxena A, Sun M, Ng AY. Make3D: Learning 3D Scene Structure from a Single Still Image. In IEEE Trans Pattern Anal Mach Intell. 2009;31:824.
    [46] Silberman N, Hoiem D, Kohli P, Fergus R. Indoor segmentation and support inference from rgbd images. In Proc ECCV. 2012;746–760.
    [47] Mayer N. et al. A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation. In Proc CVPR. 2016;4040–4048.
    [48] Qi Y, Chang C, Xia J. Speckleless holographic display by complex modulation based on double-phase method. Opt Express. 2016;24:30368–78.
    [49] Available online: www.bigbuckbunny.org.
    [50] Available online: http://sintel.is.tue.mpg.de.
    [51] Choi S. et al. Time-multiplexed neural holography: A flexible framework for holographic near-eye displays with fast heavily-quantized spatial light modulators. ACM SIGGRAPH Conf Proc. 2022.
    [52] Yoo D, Jo Y, Nam SW, Chen C, Lee B. Optimization of computer-generated holograms featuring phase randomness control. Opt Lett. 2021;46:4769–72.
    [53] Lee B, et al. Wide-angle speckleless DMD holographic display using structured illumination with temporal multiplexing. Opt Lett. 2020;45:2148–51.
    [54] Choi S, Sitzmann V, Rubinstein M, Wetzstein G. Real-time neural holography for 4K spatial light modulators (ACM, Vancouver, Canada, 2022). ACM SIGGRAPH Conf Proc 2022;32.
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-15
  • 录用日期:  2025-08-06
  • 修回日期:  2025-06-04
  • 网络出版日期:  2025-09-25

目录

    /

    返回文章
    返回