留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multi-color pulsed chaos enables single-pixel parallel laser ranging

Yixiang Sun, Yiyang Luo, Haoguang Liu, Yusong Liu, Yao Yao, Jindong Wang, Xiahui Tang, Qizhen Sun, Perry Ping Shum. Multi-color pulsed chaos enables single-pixel parallel laser ranging[J]. PhotoniX. doi: 10.1186/s43074-025-00188-1
Citation: Yixiang Sun, Yiyang Luo, Haoguang Liu, Yusong Liu, Yao Yao, Jindong Wang, Xiahui Tang, Qizhen Sun, Perry Ping Shum. Multi-color pulsed chaos enables single-pixel parallel laser ranging[J]. PhotoniX. doi: 10.1186/s43074-025-00188-1

doi: 10.1186/s43074-025-00188-1

Multi-color pulsed chaos enables single-pixel parallel laser ranging

Funds: The work was also supported by National Natural Science Foundation of China (No. 62425505, No. 62475027); Fundamental Research Funds for the Central Universities (2024BRA012); National Natural Science Foundation of China (No. U22A20206); National Key Research and Development Program of China (No. 2022YFC2203904); Open Project Program of Wuhan National Laboratory for Opto-electronics (No. 2022WNLOKF007); Open Projects Foundation of State Key Laboratory of Optical Fiber and Cable Manufacture Technology (YOFC) (SKLD2305); Knowledge Innovation Specialized Basic Research Project of Wuhan (2023010201010052).
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] LiDAR drives forwards. Nat Photon. 2018;12:441.
    [2] Kim I, et al. Nanophotonics for light detection and ranging technology. Nat Nanotechnol. 2021;16:508–52456.
    [3] Frachetti MD, Berner J, Liu X, et al. Large-scale medieval urbanism traced by UAV–lidar in highland Central Asia. Nature. 2024;634:1118–24.
    [4] Coddington I, et al. Rapid and precise absolute distance measurements at long range. Nat Photon. 2009;3:351–6.
    [5] Lee J, Kim YJ, Lee K, et al. Time-of-flight measurement with femtosecond light pulses. Nat Photon. 2010;4:716–20.
    [6] Na Y, Jeon CG, Ahn C, et al. Ultrafast, sub-nanometre-precision and multifunctional time-of-flight detection. Nat Photon. 2020;14:355–60.
    [7] Mitchell EW, et al. Coherent laser ranging for precision imaging through flames. Optica. 2018;5:988.
    [8] Kuse N, Fermann ME. Frequency-modulated comb LIDAR. APL Photonics. 2019;4:106105.
    [9] Karpf S, Riche CT, Di Carlo D, et al. Spectro-temporal encoded multiphoton microscopy and fluorescence lifetime imaging at kilohertz frame-rates. Nat Commun. 2020;11:2062.
    [10] Goda K, Tsia KK, Jalali B. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature. 2009;458:1145–9.
    [11] Nakagawa K, Iwasaki A, Oishi Y, et al. Sequentially timed all-optical mapping photography (STAMP). Nat Photon. 2014;8:695–700.
    [12] Jiang Y, Karpf S, Jalali B. Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera. Nat Photon. 2020;14:14–8.
    [13] Mahjoubfar A, et al. Time stretch and its applications. Nat Photon. 2017;11:341–51.
    [14] Zang Z, et al. Ultrafast parallel single-pixel LiDAR with all-optical spectro-temporal encoding. APL Photonics. 2022;7:046102.
    [15] Bartels A, et al. 10-GHz self-referenced optical frequency comb. Science. 2009;326:681–681.
    [16] Schliesser A, Picqué N, Hänsch T. Mid-infrared frequency combs. Nat Photon. 2012;6:440–9.
    [17] David RC, et al. Ultrafast electro-optic light with subcycle control. Science. 2018;361:1358–63.
    [18] Zhang M, Buscaino B, Wang C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature. 2019;568:373–7.
    [19] Kippenberg TJ, et al. Dissipative kerr solitons in optical microresonators. Science. 2018;361:567.
    [20] Song Y, Hu Y, Zhu X, et al. Octave-spanning kerr soliton frequency combs in dispersion- and dissipation-engineered lithium niobate microresonators. Light Sci Appl. 2024;13:225.
    [21] Riemensberger J, et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature. 2020;581:164–70.
    [22] Lukashchuk A, Riemensberger J, Karpov M, et al. Dual chirped microcomb based parallel ranging at megapixel-line rates. Nat Commun. 2022;13:3280.
    [23] Suh M, Vahala KJ. Soliton microcomb range measurement. Science. 2018;359:884–7.
    [24] Trocha P, et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science. 2018;359:887–91.
    [25] Han JJ, et al. Dual-comb spectroscopy over a 100 km open-air path. Nat Photon. 2024;18:1195–202.
    [26] Hwang I-P, Lee C-H. Mutual interferences of a true-random lidar with other lidar signals. IEEE Access. 2020;8:124123–33.
    [27] Matthey R, Mitev V. Pseudo-random noise-continuous-wave laser radar for surface and cloud measurements. Opt Lasers Eng. 2005;43:557–71.
    [28] Tsai C-M, Liu Y-C. Anti-interference single-photon lidar using stochastic pulse position modulation. Opt Lett. 2020;45:439–42.
    [29] Chen JD, et al. 3-D multi-input multi-output (MIMO) pulsed chaos lidar based on time-division multiplexing. IEEE J Sel Top Quantum Electron. 2022;28(5):0600209.
    [30] Myneni K, Barr TA, Reed BR, Pethel SD, Corron NJ. High-precision ranging using a chaotic laser pulse train. Appl Phys Lett. 2001;78:1496–8.
    [31] Ho H-L, et al. High-speed 3D imaging using a chaos lidar system. Eur Phys J Spec Top. 2022;231:435–41.
    [32] Matsko AB, et al. Chaotic dynamics of frequency combs generated with continuously pumped nonlinear microresonators. Opt Lett. 2013;38:525–7.
    [33] Godey C, et al. Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys Rev A. 2014;89:063814.
    [34] Lukashchuk A, et al. Chaotic microcomb inertia-free parallel ranging. APL Photonics. 2023;8:056102.
    [35] Chen R, Shu H, Shen B, et al. Breaking the temporal and frequency congestion of LiDAR by parallel chaos. Nat Photon. 2023;17:306–14.
    [36] Lukashchuk A, et al. Chaotic microcomb-based parallel ranging. Nat Photon. 2023;17:814–21.
    [37] Grelu P, Akhmediev N. Dissipative solitons for mode-locked lasers. Nat Photon. 2012;6:84–92.
    [38] Yang K, Zhou Y, Ling Y, et al. Spectral period doubling and encoding of dissipative optical solitons via gain control. PhotoniX. 2024;5:26.
    [39] Wang ZQ, et al. Optical soliton molecular complexes in a passively mode-locked fibre laser. Nat Commun. 2019;10:830.
    [40] Cai Y, Fan J, Meng F, et al. Delayed optical feedback-regulated artificial soliton molecule in a femtosecond optical parametric oscillator. PhotoniX. 2024;5:41.
    [41] Liu Y, et al. Phase-tailored assembly and encoding of dissipative soliton molecules. Light Sci Appl. 2023;12:123.
    [42] Chouli S, Grelu Ph. Soliton rains in a fiber laser: an experimental study. Phys Rev A. 2010;81:063829.
    [43] Cundiff ST, Soto-Crespo JM, Akhmediev N. Experimental evidence for soliton explosions. Phys Rev Lett. 2002;88:073903.
    [44] Chen Y, et al. The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber. Laser Phys Lett. 2014;11:055101.
    [45] Tang DY, Zhao LM, Zhao B. Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser. Opt Express. 2005;13:2289–94.
    [46] Jose A, et al. Noise-like pulse seeded supercontinuum generation: an in-depth review for high-energy flat broadband sources. Laser Photon Rev. 2024;19(5): 2400511.
    [47] Goda K, Jalali B. Dispersive fourier transformation for fast continuous single-shot measurements. Nat Photon. 2013;7:102–12.
    [48] Agrawal GP. Optical pulse propagation in doped fiber amplifiers. Phys Rev A. 1991;44:7493.
    [49] Igbonacho J, et al. Dynamics of distorted and undistorted soliton molecules in a mode-locked fiber laser. Phys Rev A. 2019;99:063824.
    [50] Zavyalov A, Iliew R, Egorov O, Lederer F. Dissipative soliton molecules with independently evolving or flipping phases in mode-locked fiber lasers. Phys Rev A. 2009;80(4):043829.
    [51] Xu Z, Tian H, Zeng Z, et al. Harnessing nonlinear optoelectronic oscillator for speeding up r
计量
  • 文章访问数:  14
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-22
  • 录用日期:  2025-08-18
  • 修回日期:  2025-08-03
  • 网络出版日期:  2025-09-26

目录

    /

    返回文章
    返回