[1] |
Yu CJ, von Kugelgen S, Laorenza DW, Freedman DE. A molecular approach to quantum sensing. ACS Cent Sci. 2021;7(5):712–23.
|
[2] |
Xu Y, Su X, Chai Z, Li J. Metasurfaces toward optical manipulation technologies for quantum precision measurement. Laser Photon Rev. 2024;18(3):2300355.
|
[3] |
Pirandola S, Bardhan BR, Gehring T, Weedbrook C, Lloyd S. Advances in photonic quantum sensing. Nat Photon. 2018;12(12):724–33.
|
[4] |
Koch F, Budich JC. Quantum non-hermitian topological sensors. Phys Rev Res. 2022;4(1):013113.
|
[5] |
Budker D, Romalis M. Optical magnetometry. Nat Phys. 2007;3(4):227–34.
|
[6] |
Allred JC, Lyman RN, Kornack TW, Romalis MV. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. Phys Rev Lett. 2002;89(13):1308011–4.
|
[7] |
Meng X, Zhang Y, Zhang X, Jin S, Wang T, Jiang L, et al. Machine learning assisted vector atomic magnetometry. Nat Commun. 2023;14(1):6105.
|
[8] |
Qin Y, Shao Z, Hong T, Wang Y, Jiang M, Peng X. New classes of magnetic noise self-compensation effects in atomic comagnetometer. Phys Rev Lett. 2024;133(2):023202.
|
[9] |
Bennett JS, Vyhnalek BE, Greenall H, Bridge EM, Gotardo F, Forstner S, et al. Precision magnetometers for aerospace applications: a review. Sensors. 2021;21(16):5568.
|
[10] |
Li J, Quan W, Zhou B, Wang Z, Lu J, Hu Z, et al. SERF atomic magnetometer–recent advances and applications: a review. IEEE Sens J. 2018;18(20):8198–207.
|
[11] |
Limes ME, Foley EL, Kornack TW, Caliga S, McBride S, Braun A, et al. Portable magnetometry for detection of biomagnetism in ambient environments. Phys Rev Appl. 2020;14(1):011002.
|
[12] |
Ruan Y, He X, Ruan L, Liu F, Zhang Z, Weng J, et al. Drug monitoring by optically pumped atomic magnetometer. IEEE Photon J. 2022;14(4):1–5.
|
[13] |
Zhao B, Li L, Zhang Y, Tang J, Liu Y, Zhai Y. Optically pumped magnetometers recent advances and applications in biomagnetism: a review. IEEE Sens J. 2023;23(17):18949–62.
|
[14] |
Lu Y, Zhao T, Zhu W, Liu L, Zhuang X, Fang G, et al. Recent progress of atomic magnetometers for geomagnetic applications. Sensors-basel. 2023;23(11):5318.
|
[15] |
Zhu R, Zhang Y, Du P, Xuan Y, Yang F, Zhou Y, et al. A compact optically pumped potassium atomic magnetometer with high sensitivity under geomagnetic field intensity. Measurement. 2025;250:117099.
|
[16] |
Zhang J, Wang Y, Wang C, Zhou Z, Li W. 4He optically pumped magnetometer with RF field modulation and light stabilization in deep well for earthquake monitoring. IEEE Trans Instrum Meas. 2022;71:1–10.
|
[17] |
Fabricant A, Novikova I, Bison G. How to build a magnetometer with thermal atomic vapor: a tutorial. New J Phys. 2023;25(2):025001.
|
[18] |
Xu K, Ren X, Xiang Y, Zhang M, Zhao X, Ma K, et al. Multi-parameter optimization of Rubidium laser optically pumped magnetometers with geomagnetic field intensity. Sensors-basel. 2023;23(21):8919.
|
[19] |
Su S, Zhang G, Bi X, He X, Zheng W, Lin Q. Elliptically polarized laser-pumped Mx magnetometer towards applications at room temperature. Opt Express. 2019;27(23):33027–39.
|
[20] |
Xiao W, Liu X, Wu T, Peng X, Guo H. Radio-frequency magnetometry based on parametric resonances. Phys Rev Lett. 2024;133(9):093201.
|
[21] |
Bai D, Zhou Y, Sun Y, Yang H, Wang Y. Efficient measurement of free precession frequency in Bell-Bloom atomic magnetometers. IEEE T Instrum Meas. 2024;73:1–1.
|
[22] |
Fu Y, Fan W, Ruan J, Liu Y, Lu Z, Quan W. Effects of probe laser intensity on co-magnetometer operated in spin-exchange relaxation-free regime. IEEE Trans Instrum Meas. 2022;71:1–7.
|
[23] |
Bai D, Cheng L, Zhou Y, Yang H, Wang Y. Free precession Bell-Bloom atomic magnetometer: a new-type high-sensitivity magnetic sensor for geomagnetic background. IEEE Trans Instrum Meas. 2025;74:1–10.
|
[24] |
Li S, Liu J, Jin M, Tetteh Akiti K, Dai P, Xu Z, et al. A kilohertz bandwidth and sensitive scalar atomic magnetometer using an optical multipass cell. Measurement. 2022;190:110704.
|
[25] |
Ding Y, Xiao W, Zhao Y, Wu T, Peng X, Guo H. Dual-species all-optical magnetometer based on a Cs-K hybrid vapor cell. Phys Rev Appl. 2023;19(3):034066.
|
[26] |
Gerginov V, Pomponio M, Knappe S. Scalar magnetometry below 100 fT/Hz 1/2 in a microfabricated cell. IEEE Sens J. 2020;20(21):12684–90.
|
[27] |
Zhang G, Zeng H, Tan G, Lin Q. An integrated high-sensitivity VCSEL-based spin-exchange relaxation-free magnetometer with optical rotation detection. IEEE Sens J. 2022;22(8):7700–8.
|
[28] |
Schwindt PDD, Lindseth B, Knappe S, Shah V, Kitching J, Liew LA. Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique. Appl Phys Lett. 2007;90(8):081102.
|
[29] |
Sebbag Y, Naiman A, Talker E, Barash Y, Levy U. Chip-scale integration of nanophotonic-atomic magnetic sensors. ACS Photonics. 2021;8(1):142–6.
|
[30] |
Hu Y, Li L, Wang Y, Meng M, Jin L, Luo X, et al. Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface. Nano Lett. 2020;20(2):994–1002.
|
[31] |
Brongersma ML, Pala RA, Altug H, Capasso F, Chen WT, Majumdar A, et al. The second optical metasurface revolution: moving from science to technology. Nat Rev Electr Eng. 2025;2(2):125–43.
|
[32] |
Yu N, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science. 2011;334(6054):333–7.
|
[33] |
Sun S, Li J, Li X, Feng Y, Chen L. Ferrofluid-assisted dynamic metasurface 3D holography endowed with rapid, linear, and high-contrast color modulation. Laser Photon Rev. 2025. https://doi.org/10.1002/lpor.202401417.
|
[34] |
Chen HT, Taylor AJ, Yu N. A review of metasurfaces: physics and applications. Rep Prog Phys. 2016;79(7):076401.
|
[35] |
Sun S, Chen L, Jing X, Shi S. Oblique incidence achromatic stealth metasurface based on all-dielectric. Eur Phys J D. 2023;77(6):111.
|
[36] |
Ren H, Fang X, Jang J, Bürger J, Rho J, Maier SA. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat Nanotechnol. 2020;15(11):948–55.
|
[37] |
Sun S, Li X, Zhang J, Chen L, Li J. High-fidelity metasurface holography illuminated by an ultra-uniform flat-top beam generated through active wavefront shaping. Opt Lett. 2025;50(2):467–70.
|
[38] |
Balthasar Mueller JP, Rubin NA, Devlin RC, Groever B, Capasso F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett. 2017;118(11):113901.
|
[39] |
Sun S, Li J, Li X, Zhao X, Li K, Chen L. Dynamic 3D metasurface holography via cascaded polymer dispersed liquid crystal. Microsyst Nanoeng. 2024;10(1):1–11.
|
[40] |
Mu X, Qin H, Zhao W, Han S, Liu Z, Shi Y, et al. Chirality-free full decoupling of Jones matrix phase-channels with a planar minimalist metasurface. Nano Lett. 2025;25(4):1322–8.
|
[41] |
Sun S, Li J, Li X, Huang X, Zhang Y, Chen L. High-efficiency, broadband, and low-crosstalk 3D holography by multi-layer holographic-lens integrated metasurface. APL Photonics. 2024;9(8):086102.
|
[42] |
Wang S, Deng ZL, Wang Y, Zhou Q, Wang X, Cao Y, et al. Arbitrary polarization conversion dichroism metasurfaces for all-in-one full Poincaré sphere polarizers. Light Sci Appl. 2021;10(1):24.
|
[43] |
Li S, Chen C, Wang G, Ge S, Zhao J, Ming X, et al. Metasurface polarization optics: phase manipulation for arbitrary polarization conversion condition. Phys Rev Lett. 2025;134(2):023803.
|
[44] |
Yin Y, Jiang Q, Wang H, Huang L. Color holographic display based on complex-amplitude metasurface. Laser Photon Rev. 2025;19(1):2400884.
|
[45] |
Yang Z, Huang PS, Lin YT, Qin H, Chen J, Han S, et al. Asymmetric full-color vectorial meta-holograms empowered by pairs of exceptional points. Nano Lett. 2024;24(3):844–51.
|
[46] |
Devlin RC, Ambrosio A, Rubin NA, Mueller JPB, Capasso F. Arbitrary spin-to–orbital angular momentum conversion of light. Science. 2017;358(6365):896–901.
|
[47] |
Jang J, Moon SW, Kim J, Mun J, Maier SA, Ren H, et al. Wavelength-multiplexed orbital angular momentum meta-holography. PhotoniX. 2024;5(1):27.
|
[48] |
Yang X, Mukherjee P, Kim M, Mei H, Fang C, Choi S, et al. Atomic magnetometry using a metasurface polarizing beamsplitter in silicon-on-sapphire. ACS Photonics. 2024;11(9):3644–51.
|
[49] |
Wang Z, Li T, Soman A, Mao D, Kananen T, Gu T. On-chip wavefront shaping with dielectric metasurface. Nat Commun. 2019;10(1):3547.
|
[50] |
Solntsev AS, Agarwal GS, Kivshar YS. Metasurfaces for quantum photonics. Nat Photonics. 2021;15(5):327–36.
|
[51] |
Zhu L, Liu X, Sain B, Wang M, Schlickriede C, Tang Y, et al. A dielectric metasurface optical chip for the generation of cold atoms. Sci Adv. 2020;6(31):eabb6667.
|
[52] |
Huang X, Yuan W, Holman A, Kwon M, Masson SJ, Gutierrez-Jauregui R, et al. Metasurface holographic optical traps for ultracold atoms. Prog Quantum Electron. 2023;89:100470.
|
[53] |
Li J, Sun S, Li X, Feng Y, Zhang Y, Huang X, et al. High-quality atom-manipulation by Pancharatnam-Berry metasurface for high-sensitivity miniaturized optically pumped magnetometers. ACS Photonics. 2025;12(1):348–56.
|
[54] |
Liang Z, Long T, Liu L, Hu J, Zhou P, Hu G, et al. Space-variant polarization distribution mitigates AC-Stark shifts in a SERF atomic magnetometer. ACS Photonics. 2025;12(5):2522–9.
|
[55] |
Georgi P, Massaro M, Luo KH, Sain B, Montaut N, Herrmann H, et al. Metasurface interferometry toward quantum sensors. Light Sci Appl. 2019;8(1):70.
|
[56] |
Lee J, Kim J, Shim S, Yang Y, Choi J, Rho J, et al. Real-time observation of the spin Hall effect of light using metasurface-enabled single-shot weak measurements. Nat Commun. 2025;16(1):2699.
|
[57] |
Zhou J, Liu S, Qian H, Li Y, Luo H, Wen S, et al. Metasurface enabled quantum edge detection. Sci Adv. 2020;6(51):eabc4385.
|
[58] |
Wang M, Chen L, Choi DY, Huang S, Wang Q, Tu C, et al. Characterization of orbital angular momentum quantum states empowered by metasurfaces. Nano Lett. 2023;23(9):3921–8.
|
[59] |
Wang K, Titchener JG, Kruk SS, Xu L, Chung HP, Parry M, et al. Quantum metasurface for multiphoton interference and state reconstruction. Science. 2018;361(6407):1104–8.
|
[60] |
Hu J, Liang Z, Zhou P, Liu L, Hu G, Ye M. Chip-scale single-beam atomic magnetometer enabled by spin-selective interference meta-optics. ACS Photon. 2025;12(1):282–92.
|
[61] |
Li J, Zheng J, Pan S, Li K, Yu H, Zheng W. Metasurface-based optical system for miniaturization of atomic magnetometers. Opt Express. 2024;32(12):20538–50.
|
[62] |
Hu J, Liang Z, Zhou P, Liu L, Hu G, Ye M. Integrated optical probing scheme enabled by localized-interference metasurface for chip-scale atomic magnetometer. Nanophotonics. 2024;13(23):4231–42.
|