留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Surface plasmon driven atomic migration mediated by molecular monolayer

Qihong Hu, Jieyi Zhang, Ramya Emusani, Junchao Yang, Xin Zuo, Yiran Wang, Yonggang Huang, Dong Xiang. Surface plasmon driven atomic migration mediated by molecular monolayer[J]. PhotoniX. doi: 10.1186/s43074-025-00190-7
Citation: Qihong Hu, Jieyi Zhang, Ramya Emusani, Junchao Yang, Xin Zuo, Yiran Wang, Yonggang Huang, Dong Xiang. Surface plasmon driven atomic migration mediated by molecular monolayer[J]. PhotoniX. doi: 10.1186/s43074-025-00190-7

doi: 10.1186/s43074-025-00190-7

Surface plasmon driven atomic migration mediated by molecular monolayer

Funds: We acknowledge funding from the National Key R&D Program of China (2021YFA1200103), the National Natural Science Foundation of China (22273041, 12174201), the Natural Science Foundation of Tianjin (19JCZDJC31000, 19JCJQJC60900, 22JCYBJC01310).
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Xiang D, Wang X, Jia C, Lee T, Guo X. Molecular-scale electronics: from concept to function. Chem Rev. 2016;116(7):4318–440.
    [2] Savage KJ, Hawkeye MM, Esteban R, Borisov AG, Aizpurua J, Baumberg JJ. Revealing the quantum regime in tunnelling plasmonics. Nature. 2012;491(7425):574–7.
    [3] Feldmann J, Youngblood N, Karpov M, Gehring H, Li X, Stappers M, et al. Parallel convolutional processing using an integrated photonic tensor core. Nature. 2021;589(7840):52–8.
    [4] Baumberg JJ, Aizpurua J, Mikkelsen MH, Smith DR. Extreme nanophotonics from ultrathin metallic gaps. Nat Mater. 2019;18(7):668–78.
    [5] Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics. 2008;2(8):496–500.
    [6] Baranov DG, Wersäll M, Cuadra J, Antosiewicz TJ, Shegai T. Novel nanostructures and materials for strong light-matter interactions. ACS Photon. 2017;5(1):24–42.
    [7] Baumberg JJ. Picocavities: a primer. Nano Lett. 2022;22(14):5859–65.
    [8] Wang M, Wang T, Ojambati OS, Duffin TJ, Kang K, Lee T, et al. Plasmonic phenomena in molecular junctions: principles and applications. Nat Rev Chem. 2022;6(10):681–704.
    [9] Gramotnev DK, Bozhevolnyi SI. Plasmonics beyond the diffraction limit. Nat Photon. 2010;4(2):83–91.
    [10] Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML. Plasmonics for extreme light concentration and manipulation. Nat Mater. 2010;9(3):193–204.
    [11] Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature. 2003;424(6950):824–30.
    [12] Yang YX, Chu JP. Cost-effective large-area Ag nanotube arrays for SERS detections: effects of nanotube geometry. Nanotechnology. 2021;32(47):475504.
    [13] Langer J, de Aberasturi DJ, Aizpurua J, Alvarez-Puebla RA, Auguie B, Baumberg JJ, et al. Present and future of surface-enhanced raman scattering. ACS Nano. 2020;14(1):28–117.
    [14] Koya AN, Li W. Multifunctional charge transfer plasmon resonance sensors. Nanophotonics. 2023;12(12):2103–13.
    [15] Liu X, Dang A, Li T, Sun Y, Lee TC, Deng W, et al. Plasmonic coupling of Au nanoclusters on a flexible MXene/graphene oxide fiber for ultrasensitive SERS sensing. ACS Sens. 2023;8(3):1287–98.
    [16] Lee YY, Kim RM, Im SW, Balamurugan M, Nam KT. Plasmonic metamaterials for chiral sensing applications. Nanoscale. 2020;12(1):58–66.
    [17] Kang G, Hu S, Guo C, Arul R, Sibug-Torres SM, Baumberg JJ. Design rules for catalysis in single-particle plasmonic nanogap reactors with precisely aligned molecular monolayers. Nat Commun. 2024;15(1):9220.
    [18] Ma XC, Dai Y, Yu L, Huang BB. Energy transfer in plasmonic photocatalytic composites. Light Sci Appl. 2016;5(2):e16017.
    [19] Oulton RF, Sorger VJ, Zentgraf T, Ma RM, Gladden C, Dai L, et al. Plasmon lasers at deep subwavelength scale. Nature. 2009;461(7264):629–32.
    [20] Xu X, Qi Q, Hu Q, Ma L, Emusani R, Zhang S, et al. Manipulating pi-pi Interactions between Single Molecules by Using Antenna Electrodes as Optical Tweezers. Phys Rev Lett. 2024;133(23):233001.
    [21] Juan ML, Righini M, Quidant R. Plasmon nano-optical tweezers. Nat Photonics. 2011;5(6):349–56.
    [22] Zhang Y, Min C, Dou X, Wang X, Urbach HP, Somekh MG, et al. Plasmonic tweezers: for nanoscale optical trapping and beyond. Light Sci Appl. 2021;10(1):59.
    [23] Yang B, Chen G, Ghafoor A, Zhang Y, Zhang Y, Zhang Y, et al. Sub-nanometre resolution in single-molecule photoluminescence imaging. Nat Photonics. 2020;14(11):693–9.
    [24] Lee J, Crampton KT, Tallarida N, Apkarian VA. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature. 2019;568(7750):78–82.
    [25] Lin QQ, Hu S, Földes T, Huang JY, Wright D, Griffiths J, et al. Optical suppression of energy barriers in single molecule-metal binding. Sci Adv. 2022;8(25):eabp9285.
    [26] Guo C, Benzie P, Hu S, de Nijs B, Miele E, Elliott E, et al. Extensive photochemical restructuring of molecule-metal surfaces under room light. Nat Commun. 2024;15(1):1928.
    [27] Xomalis A, Chikkaraddy R, Oksenberg E, Shlesinger I, Huang J, Garnett EC, et al. Controlling optically driven atomic migration using crystal-facet control in plasmonic nanocavities. ACS Nano. 2020;14(8):10562–8.
    [28] Liu N, Hentschel M, Weiss T, Alivisatos AP, Giessen H. Three-dimensional plasmon rulers. Science. 2011;332(6036):1407–10.
    [29] Tabor C, Murali R, Mahmoud M, El-Sayed MA. On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape. J Phys Chem A. 2009;113(10):1946–53.
    [30] Hill RT, Mock JJ, Hucknall A, Wolter SD, Jokerst NM, Smith DR, et al. Plasmon ruler with angstrom length resolution. ACS Nano. 2012;6(10):9237–46.
    [31] Elliott E, Bedingfield K, Huang JY, Hu S, de Nijs B, Demetriadou A, et al. Fingerprinting the hidden facets of plasmonic nanocavities. ACS Photonics. 2022;9(8):2643–51.
    [32] Yao J, Li Y, Wang S, Ding T. Thin-film-assisted photothermal deformation of gold nanoparticles: a facile and in-situ strategy for single-plate-based devices. ACS Nano. 2024;18(15):10618–24.
    [33] Abraham U. Formation and structure of self-assembled monolayers. Chem Rev. 1996;96(4):1533–54.
    [34] Wang M, Zhang J, Adijiang A, Zhao X, Tan M, Xu X, et al. Plasmon-assisted trapping of single molecules in nanogap. Materials. 2023;16(8):3230.
    [35] Zhan C, Wang G, Yi J, Wei J-Y, Li Z-H, Chen Z-B, et al. Single-molecule plasmonic optical trapping. Matter. 2020;3(4):1350–60.
    [36] Zhao X, Yan Y, Tan M, Zhang S, Xu X, Zhao Z, et al. Molecular dimer junctions forming: role of disulfide bonds and electrode-compression-time. SmartMat. 2024;5(4):e1280.
    [37] Ciracì C. Current-dependent potential for nonlocal absorption in quantum hydrodynamic theory. Phys Rev B. 2017;95(24):245434.
    [38] Li WC, Zhou Q, Zhang P, Chen XW. Direct electro plasmonic and optic modulation via a nanoscopic electron reservoir. Phys Rev Lett. 2022;128(21):217401.
    [39] Zhou Q, Li WC, He Z, Zhang P, Chen XW. Quantum hydrodynamic model for noble metal nanoplasmonics. Phys Rev B. 2023;107(20):205413.
    [40] Liu R, Bi J-J, Xie Z, Yin K, Wang D, Zhang G-P, et al. Fabricating atom-sized gaps by field-aided atom migration in nanoscale junctions. Phys Rev A. 2018;9(5):054023.
    [41] Zhang X, Zhao Z, Zhang S, Adijiang A, Zhao T, Tan M, et al. In situ reconnection of nanoelectrodes over 20 nm gaps on polyimide substrate. Small Structures. 2024;5(2):2300283.
    [42] Choi HK, Park WH, Park CG, Shin HH, Lee KS, Kim ZH. Metal-catalyzed chemical reaction of single molecules directly probed by vibrational spectroscopy. J Am Chem Soc. 2016;138(13):4673–84.
    [43] Mueller NS, Arul R, Jakob LA, Blunt MO, Földes T, Rosta E, et al. Collective mid-infrared vibrations in surface-enhanced Raman scattering. Nano Lett. 2022;22(17):7254–60.
    [44] Huang YF, Zhu HP, Liu GK, Wu DY, Ren B, Tian ZQ. When the signal is not from the original molecule to be detected: chemical transformation of para-aminothiophenol on Ag during the SERS measurement. J Am Chem Soc. 2010;132(27):9244–6.
    [45] Teodorescu CM. Image molecular dipoles in surface enhanced Raman scattering. Phys Chem Chem Phys. 2015;17(33):21302–14.
计量
  • 文章访问数:  13
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-20
  • 录用日期:  2025-08-18
  • 修回日期:  2025-08-04
  • 网络出版日期:  2025-09-01

目录

    /

    返回文章
    返回