留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

5.2-THz-bandwidth miniaturized spectrometer using a GHz-tunable laser

Huashan Yang, Xiaohu Tang, Hao Zhang, Lihan Wang, Zongxin Ju, Zhe Kang, Jijun He, Shilong Pan. 5.2-THz-bandwidth miniaturized spectrometer using a GHz-tunable laser[J]. PhotoniX. doi: 10.1186/s43074-025-00193-4
Citation: Huashan Yang, Xiaohu Tang, Hao Zhang, Lihan Wang, Zongxin Ju, Zhe Kang, Jijun He, Shilong Pan. 5.2-THz-bandwidth miniaturized spectrometer using a GHz-tunable laser[J]. PhotoniX. doi: 10.1186/s43074-025-00193-4

doi: 10.1186/s43074-025-00193-4

5.2-THz-bandwidth miniaturized spectrometer using a GHz-tunable laser

Funds: This work was supported in part by the National Key Research and Development Program of China (2022YFB2802700); the National Natural Science Foundation of China (62205145, 62271249); the Natural Science Foundation of Jiangsu Province (BK20220887); Leading-Edge Technology Program of Jiangsu Natural Science Foundation (BK20232001).
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Eriksson S, et al. Integrated optical components on atom chips. Eur Phys J D. 2005;35:135–9.
    [2] Savchenkov AA, et al. Kilohertz optical resonances in dielectric crystal cavities. Phys Rev A. 2004;70(5):051804.
    [3] Peng B, et al. Parity-time-symmetric whispering-gallery microcavities. Nat Phys. 2014;10:394–8.
    [4] Zhi Y, et al. Single nanoparticle detection using optical microcavities. Adv Mater. 2017;29:1604920.
    [5] Endres CP, et al. The cologne database for molecular spectroscopy, CDMS, in the virtual atomic and molecular data centre, VAMDC. J Mol Spectrosc. 2016;327:95–104.
    [6] Woodward RI. Dispersion engineering of mode-locked fibre lasers. J Opt. 2018;20(3):033002.
    [7] Li J, et al. Hybrid dispersion engineering based on chiral metamirror. Laser Photon Rev. 2023;17:2200777.
    [8] Guo H, et al. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides. Nat Photon. 2018;12:330–5.
    [9] Riemensberger J, et al. A photonic integrated continuous-travelling-wave parametric amplifier. Nature. 2022;612:56–61.
    [10] Brasch V, et al. Photonic chip-based optical frequency comb using soliton cherenkov radiation. Science. 2016;351:357–60.
    [11] Herr T, et al. Temporal solitons in optical microresonators. Nat Photonics. 2014;8:145–52.
    [12] Liu J, et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat Commun. 2021;12:2236.
    [13] Zhang H, et al. Microresonator soliton frequency combs via cascaded Brillouin scattering. Commun Phys. 2025;8:216.
    [14] Liu AQC, et al. Relative timing jitter compression in a Fabry–Pérot cavity-assisted free-running dual-comb interferometry. Adv Photon Nexus. 2024;3:056014.
    [15] Wan Z, et al. Quantum correlation-enhanced dual-comb spectroscopy. Light Sci Appl. 2025;14:257.
    [16] Luo Y-H, et al. A wideband, high-resolution vector spectrum analyzer for integrated photonics. Light Sci Appl. 2024;13:83.
    [17] Xu B, et al. Whispering-gallery-mode barcode-based broadband sub-femtometer-resolution spectroscopy with an electro-optic frequency comb. Adv Photon. 2024;6:016006.
    [18] Gifford DK, et al. Optical vector network analyzer for single-scan measurements of loss, group delay, and polarization mode dispersion. Appl Opt. 2005;44:7282–6.
    [19] Sagues M, Loayssa A. Swept optical single sideband modulation for spectral measurement applications using stimulated Brillouin scattering. Opt Express. 2010;18:17555–68.
    [20] Xue M, et al. Performance analysis of optical vector analyzer based on optical single-sideband modulation. Journal of the Optical Society of America B. 2013;30:928–33.
    [21] Wang WT, et al. Optical vector network analyzer with improved accuracy based on Brillouin-assisted optical carrier processing. IEEE Photonics J. 2014;6:1–10.
    [22] Feng H, et al. Integrated lithium niobate optical vector network analyzers based on single-sideband modulators, International Topical Meeting on Microwave Photonics (MWP). Nanjing: IEEE; 2023. p. 1–3.
    [23] Li W, et al. Optical vector network analyzer with improved accuracy based on polarization modulation and polarization pulling. Opt Lett. 2015;40:1679–82.
    [24] Wang M, Yao J. Optical vector network analyzer based on unbalanced double-sideband modulation. IEEE Photon Technol Lett. 2013;25:753–6.
    [25] Zou X, et al. Hyperfine intrinsic magnitude and phase response measurement of optical filters based on electro-optical harmonics heterodyne and Wiener-Lee transformation. J Lightwave Technol. 2019;37:2654–60.
    [26] Zhang S, et al. On-the-fly precision spectroscopy with a dual-modulated tunable diode laser and Hz-level referencing to a cavity. Adv Photon. 2024;6:046003.
    [27] Marpaung D, et al. Integrated microwave photonics. Nat Photon. 2019;13:80–90.
    [28] Yao J, Capmany J. Microwave photonics. Sci China Inf Sci. 2022;65:221401.
    [29] Qing T, et al. Optical vector analysis with attometer resolution, 90-dB dynamic range and THz bandwidth. Nat Commun. 2019;10:5135.
    [30] Pfeiffer MHP, et al. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica. 2017;4:684–91.
    [31] Yi X, et al. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica. 2015;2:1078–85.
    [32] Kim S, et al. Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators. Nat Commun. 2017;8:372.
    [33] Wang W, et al. Robust soliton crystals in a thermally controlled microresonator. Opt Lett. 2018;43:2002–5.
    [34] Shu H, et al. Microcomb-driven silicon photonic systems. Nature. 2022;605:457–63.
    [35] Marin-Palomo P, et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature. 2017;546:274–9.
    [36] Corcoran B, et al. Ultra-dense optical data transmission over standard fibre with a single chip source. Nat Commun. 2020;11:2568.
    [37] Shao W, et al. Terabit FSO communication based on a soliton microcomb. Photonics Res. 2022;10:2802–8.
    [38] Suh MG, Vahala KJ. Soliton microcomb range measurement. Science. 2018;359:884–7.
    [39] Wang JD, et al. Long-distance ranging with high precision using a soliton microcomb. Photonics Res. 2020;8:1964–72.
    [40] Chen R, et al. Breaking the temporal and frequency congestion of LiDAR by parallel chaos. Nat Photon. 2023;17:306–14.
    [41] Suh MG, et al. Microresonator soliton dual-comb spectroscopy. Science. 2016;354:600–3.
    [42] Yang Q-F, et al. Vernier spectrometer using counterpropagating soliton microcombs. Science. 2019;363:965–8.
    [43] Wang Z, et al. Rhythmic soliton interactions for integrated dual-microcomb spectroscopy. 2024. arXiv:2402.08432.
    [44] Obrzud E, et al. A microphotonic astrocomb. Nat Photon. 2019;13:31–5.
    [45] Xu X, et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature. 2021;589:44–51.
    [46] Wang X, et al. Chip-based high-dimensional optical neural network. Nano-Micro Lett. 2022;14:221.
    [47] Hu JQ, et al. Reconfigurable radiofrequency filters based on versatile soliton microcombs. Nat Commun. 2020;11:4377.
    [48] Xu X, et al. Advanced RF and microwave functions based on an integrated optical frequency comb source. Opt Express. 2018;26:2569–83.
    [49] Yang H, et al. Fully programmable microwave photonic filter based on manageable two-soliton microcombs. J Lightwave Technol. 2023;41:7292–301.
    [50] Ding J, et al. Wideband image-reject RF channelization based on soliton microcombs (invited paper). APL Photon. 2023;8:090801.
    [51] Liu JQ, et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat Photon. 2020;14(8):486.
    [52] Jin X., et al. Microresonator-referenced soliton microcombs with zeptosecond-level timing noise. 2024. arXiv:2401.12760.
    [53] Lei F, et al. Optical linewidth of soliton microcombs. Nat Commun. 2022;13:3161.
    [54] Guo H, et al. Universal dynamics and deterministic switching of dissipative kerr solitons in optical microresonators. Nat Phys. 2017;13:94–102.
    [55] Pavlov NG, et al. Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes. Nat Photon. 2018;12:694–8.
    [56] Niu R, et al. Atom-referenced and stabilized soliton microcomb. Sci China Phys Mech Astron. 2023;67:224262.
    [57] Li M, et al. Autonomous frequency locking for zero-offset microcomb. 2024. arXiv:2403.02868.
    [58] Zhang M, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature. 2019;568:373–7.
    [59] Gordon IE, et al. The HITRAN2020 molecular spectroscopic database. J Quant Spectrosc Radiat Transfer. 2022;277:107949.
    [60] Fujii S, Tanabe T. Dispersion engineering and measurement of whispering gallery mode microresonator for kerr frequency comb generation. Nanophotonics. 2020;9:1087–104.
    [61] "OVA 5100 Optical Vector Analyzer" (LUNA), http://lunainc.com/product/ova-5100.
    [62] Rahim A, et al. Taking silicon photonics modulators to a higher performance level: state-of-the-art and a review of new technologies. Adv Photon. 2021;3:024003–024003.
    [63] Michel J, et al. High-performance Ge-on-Si photodetectors. Nat Photon. 2010;4:527–34.
    [64] Shi Y, et al. 103GHz germanium-on-silicon photodiode enabled by an optimized U-shaped electrode. Photonics Res. 2024;12:1–6.
    [65] Miller DAB. Silicon photonics meshing optics with applications. Nat Photonics. 2017;11:403–4.
    [66] Pérez D, et al. Multipurpose silicon photonics signal processor core. Nat Commun. 2017;8:636.
    [67] Liu Y, et al. Integrated microwave photonic filters. Adv Opt Photon. 2020;12:485–555.
    [68] Zhang WF, Yao JP. Photonic integrated field-programmable disk array signal processor. Nat Commun. 2020;11:406.
    [69] Wu B, et al. Programmable integrated photonic coherent matrix: principle, configuring, and applications. Appl Phys Rev. 2024;11:011309.
    [70] Liu W, et al. A fully reconfigurable photonic integrated signal processor. Nat Photon. 2016;10:190–5.
    [71] Shen B, et al. Integrated turnkey soliton microcombs. Nature. 2020;582:365–9.
    [72] Wildi T, et al. Phase-stabilised self-injection-locked microcomb. Nat Commun. 2024;15:7030.
    [73] Xiang C, et al. Laser soliton microcombs heterogeneously integrated on silicon. Science. 2021;373:99–103.
    [74] Beller J, Shao L. Acousto-optic modulators integrated on-chip. Light Sci Appl. 2022;11:240.
    [75] Op de Beeck C, et al. Heterogeneous III-V on silicon nitride amplifiers and lasers via microtransfer printing. Optica. 2020;7:386–93.
    [76] Zhang G, et al. Hybrid-integrated wideband tunable optoelectronic oscillator. Opt Express. 2023;31:16929–38.
    [77] Liu J, et al. Monolithic piezoelectric control of soliton microcombs. Nature. 2020;583:385–90.
计量
  • 文章访问数:  13
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-10
  • 录用日期:  2025-08-24
  • 修回日期:  2025-08-06
  • 网络出版日期:  2025-09-26

目录

    /

    返回文章
    返回